
CS109 Sample Questions for the Final

These questions are pulled from several previous finals. Your actual final will include
fewer questions and somewhat less programming and you would not be asked to write
programs that use objects, but should be able to read programs that utilize objects.
However, these problems should give you an idea of what type of questions you will be
asked.

1. Short Answer. Provide brief (1-3 sentence) answers to the following:

a) What is the role of a stub in modular program design?

b) How many array entries are created by the following statement?

Dim a(10) As Integer

c) Given the following class:

Public Class Foo

 Public x As Integer

End Class

When we enter the following code and type the “.” VB.NET pops up:

Why does only GetType appear and not “x” when “x” is a public member of the
object?

d) In the previous problem in part c, why does “GetType” appear when it does not

look like we defined such a property in class Foo?

e) Describe what a breakpoint is and how the debugging tool in Visual Studio can be

used to inspect the contents of variables.

f) What is the difference between the radio button control and the checkbox control?

2. Find the Bugs

All of the following code snippets have one or more bugs. Identify each one and fix the
bug. Assume the necessary code is in place to make a working program (e.g. the form
exists, the code is within some event, etc.).

a) The following should continue until the user enters a number from 1-3:

 Dim i As Integer = -1

 While ((i <> 1) Or (i <> 2) Or (i <> 3))

 i = CInt(InputBox("Enter either 1, 2, or 3"))

 End While

b) The following code should print “Big” or “Bigger”

 Dim i As Integer

 i = CInt(InputBox("Enter a integer."))

 If (0 < i < 10) Then

 Console.WriteLine("Big")

 ElseIf (10 < i) Then

 Console.WriteLine("Bigger")

 End If

c) The code below should swap the values of X and Y, outputting “2 1”

 Dim x, y As Integer

 x = 1

 y = 2

 Swap(x, y)

 Console.WriteLine(x & " " & y)

 The swap subroutine is defined as follows:

 Public Sub Swap(ByRef x As Integer, ByRef y As Integer)

 x = y

 y = x

 End Sub

d) In the course notes for Selection Sort, I erroneously gave you the following buggy

code:

 Sub SelectionSort(ByVal ary() As Integer)
 Dim j, i As Integer

 Dim temp As Integer

 Dim minValue As Integer

 Dim minPos As Integer

 Dim lastIndex As Integer

 lastIndex = ary.Length - 1

 For j = 0 To lastIndex - 1

 ' Find the index of the smallest element

 ' between position j and lastIndex.

 ' Start by assuming the min is in position j+1

 minValue = ary(j + 1)

 minPos = j + 1

 For i = j + 2 To lastIndex

 If ary(i) < minValue Then

 ' New minimum

 minPos = i

 minValue = ary(i)

 End If

 Next

 ' Swap min with position j

 temp = ary(j)

 ary(j) = ary(minPos)

 ary(minPos) = temp

 Next

 End Sub

Give an example of an input array where the code will not correctly sort the array as it is
written.

3. Nested Loops

Rewrite the following code such that the functionality remains the same, but uses two
while loops instead of the for loops.

 Dim i, j, n As Integer

 n = 11

 For i = 11 To 1 Step -2

 For j = 1 To i

 Console.Write("*")

 Next

 Console.WriteLine()

 Next

4. Loops and Subroutines: Implementing the “choose” function

a) The factorial of a nonnegative integer n is written n! and is defined as follows:

n! = n* (n-1) * (n-2) * … 3 * 2 * 1
 and

 n! = 1 when n = 0 or n = 1

e.g.:

1! is equal to 1,
2! is equal to 2*1 = 2
3! is equal to 3*2*1 = 6
4! is equal to 4*3*2*1 = 24, etc.

Write a function called factorial that returns the factorial, as an integer, of the number
passed in (also as an integer).

b) Written 








n

m
 and pronounced “m choose n”, the choose function is how many

different ways m objects can be chosen from a collection of n objects. For example, for
the set of numbers {1,2,3} n=3.

If m=1 then we have three ways of choosing one item from the set: {1}, {2}, {3}.
If m=2 then we have three ways of choosing two items from the set: {1,2} {1,3}, {2,3}.
If m=3 then we have one way of choosing three items from the set: {1,2,3}.

The choose function has many applications in statistics and in the analysis of algorithms.
m choose n is defined as:

()())!(!

!

mnm

n

n

m

−
=









Write a function called choose that returns m choose n. The function should take as input
two integer parameters for m and n and return the answer as an integer. The choose
function should invoke the factorial function you wrote in part a.

c) Write code that could go into a button-click or other event that displays the number of

the ways we could select items out of a set that varies from 1 to 5 objects. Here is a
sample output illustrating the desired behavior:

1 objects can be chosen from 1 objects 1 ways.

1 objects can be chosen from 2 objects 2 ways.
2 objects can be chosen from 2 objects 1 ways.

1 objects can be chosen from 3 objects 3 ways.
2 objects can be chosen from 3 objects 3 ways.
3 objects can be chosen from 3 objects 1 ways.

1 objects can be chosen from 4 objects 4 ways.
2 objects can be chosen from 4 objects 6 ways.
3 objects can be chosen from 4 objects 4 ways.
4 objects can be chosen from 4 objects 1 ways.

1 objects can be chosen from 5 objects 5 ways.
2 objects can be chosen from 5 objects 10 ways.
3 objects can be chosen from 5 objects 10 ways.
4 objects can be chosen from 5 objects 5 ways.
5 objects can be chosen from 5 objects 1 ways.

5. Arrays

Given the following array declaration:

Dim intArray() As Integer = {55, 12, 103, 120, 98, 5, 109, 991, 3, 59}

Write code that scans through the array and outputs the largest and the smallest value
contained in the array.

6. Classes and Inheritance : Calculating Postage

The amount that it costs to ship a package varies depending on its size and weight.

a) Write a class called Package. The class should have:

• A member variable to store the weight of the package in pounds as a double

• A property called “Weight” that allows a user to get and set the weight variable

• An overridable function called “CalcShipping” that determines the cost to ship the
package using the formula of cost = $3 per pound. The calculated cost value
should be returned by the function.

b) Create a derived class called Box for box packages. Box should inherit from
Package. The class should have:

• Member variables to store the dimensions of the box’s height, width, and
depth in inches stored as doubles.

• Properties named “Height”, “Width” and “Depth” to get and set the member
variables

• Override the CalcShipping function, where if the height + width + depth is
greater than 108 inches, then $30 is added to the normal cost for a package
(where normal cost is what CalcShipping returns as computed in the Package
class). If the height + width + depth is not greater than 108 inches then the
function should return the normal cost for the package and not add $30.

c) Write sample code that could go into a button-click event that creates a box,

assigns a weight, height, width, and depth, and prints the shipping cost.

7. Classes and Constructors

Given the following class:

Public Class MyClass

 Public val As Integer = 1

 Public Sub New()

 val = 2

 End Sub

 Public Sub New(ByVal newNum As Integer)

 val = newNum

 End Sub

 Public Sub Print()

 Console.WriteLine(val)

 End Sub

End Class

What would this code output to the Console?

 Dim r1 As New MyClass

 Dim r2 As New MyClass(3)

 r1.Print()

 r2.Print()

8. Food Sales

Now that VB.NET is over and summer is here, it means selling food from your booth at
the State Fair. You have an array of foods that you sell, e.g.:

 Dim aryFoods() As String = {"Elephant Ears", _

"Turkey Leg", "Salmon Taco", "Deep Fried Twinkie"}

Each food is given an ID, which is its index in the array. For example, 0 refers to
Elephant Ears, 1 refers to Turkey Leg, 2 refers to Salmon Taco, and 3 refers to Deep
Fried Twinkies.

At the end of the day you get a log of food sales with the ID of each food in the order it is
sold. The log is stored in an array. For example, if you sold, in order: two elephant ears,
two turkey legs, one elephant ear, one twinkie, one salmon taco, and one twinkie, then
the array would look like this:

 Dim arySaleLog() As Integer = {0, 0, 1, 1, 0, 3, 2, 3}

Write a subroutine called CountSales that inputs both arrays as parameters and
outputs to the Console window the number of sales for each food.

Given the arrays defined above,

 CountSales(aryFoods, arySaleLog)

Would output:

You sold 3 Elephant Ears

You sold 2 Turkey Leg

You sold 1 Salmon Taco

You sold 2 Deep Fried Twinkie

Make sure that your subroutine works for any array of foods, not just the example given
here. For example, it should also work if there were 10 foods in the array, with ID’s from
0 to 9. Hint: Create a separate array to count the number of each food item. Use

aryFoods.Length to get the number of items in the array.

9. The Time Machine

Your time machine is capable of going forward in time up to 24 hours. The machine is
configured to jump ahead in minutes. To enter the proper number of minutes into your
machine, you would like a program that can take a start time (in hours, minutes, am/pm)
and a future time (in hours, minutes, am/pm) and calculate the difference in minutes
between the start and future time.

A time is specified in your program with three variables:

 Dim hours, minutes As Integer
 Dim ampm As String

For example, to represent 11:50 AM, you would store:

 hours = 11
 minutes = 50
 ampm = "AM"

This means that to store a start and a future time you need six variables:

 Dim hrsStart, minStart As Integer
 Dim ampmStart As String
 Dim hrsFuture, minFuture As Integer
 Dim ampmFuture As String

a) Describe an algorithm that takes a start and future time using the variables described

above and computes the difference in minutes. Be specific and give the necessary
equations and logic to perform the conversion. Describe your algorithm using
pseudocode.

For example, given a start time of 11:59 AM and a future time of 12:01 PM, your
algorithm should compute 2 minutes as the time difference.

b) Write the Visual Basic .NET code to implement your algorithm from part a. Write

your code in a function called ComputeDifference that takes the six variables as
parameters to represent the start time and future time. Your function should return,
as an Integer, the time difference in minutes.

