
1

Sound, Part 3

Multiple Echoes

• Here is a recipe to create multiple echoes:
def echoes(sndfile, delay, num):

s1 = makeSound(sndfile)

ends1 = getLength(s1)

ends2 = ends1 + (delay * num)

#ends2 is in samples – convert to seconds and make empty sound that long

s2 = makeEmptySound(1 + int(ends2 / getSamplingRate(s1)))

echoAmplitude = 1.0

for echoCount in range(1, num + 1):

echoAmplitude = echoAmplitude * 0.6

for pos1 in range(1, ends1):

pos2 = pos1 + (delay * echoCount)

value1 = getSampleValueAt(s1, pos1) * echoAmplitude

value2 = getSampleValueAt(s2, pos2)

setSampleValueAt(s2, pos2, value1 + value2)

play(s2)

return s2

2

Splicing Sounds

• Say we want to splice pieces of speech

together extracting words from the same

sound file:

– Find the end points of words

– Copy the samples into the right places to
make the words come out as we want them

– (We can also change the volume of the words
as we move them, to increase or decrease
emphasis and make it sound more natural.)

Finding the word endpoints

• Using MediaTools

and play before/after
cursor, can figure out

the index numbers
where each word
ends

Change to:

“We the United People of

the United States…”

3

Now, it’s all about copying

• We have to keep track of the source and

target indices, srcIndex and destIndex

destIndex = Where-the-incoming-sound-should-start

for srcIndex in range(startingPoint, endingPoint):

sampleValue = getSampleValueAt(source, srcIndex)

setSampleValueAt(dest, destIndex, sampleValue)

destIndex = destIndex + 1

How to do it

• First, set up a source and target.

• Next, we copy “United” (samples 33414 to
40052) after “We the” (sample 17408)

– That means that we end up at 17408+(40052-
33414) =
17408+6638=24046

– Where does “People” start?

• Next, we copy “People” (17408 to 26726)
immediately afterward

– 24047 + (26726-17408) = 33365

– Do we have to copy “of” to?

– Or is there a pause in there that we can make
use of?

• Finally, we insert a little (1/441-th of a second)
of space – 0’s

4

def splicePreamble():

file = "/Users/sweat/1315/MediaSources/preamble10.wav"

source = makeSound(file)

dest = makeSound(file) # This will be the newly spliced sound

destSample = 17408 # targetIndex starts after "We the" in the new sound

for srcSample in range(33414, 40052): # Where the word "United" is in the sound

setSampleValueAt(dest, destSample, getSampleValueAt(source, srcSample))

destSample = destSample + 1

for srcSample in range(17408, 26726): # Where the word "People" is in the sound

setSampleValueAt(dest, destSample, getSampleValueAt(source, srcSample))

destSample = destSample + 1

for index in range(1, 1000): #Stick some quiet space after that

setSampleValueAt(dest, destSample, 0)

destSample = destSample + 1

play(dest) #Let's hear and return the result

return dest

The Whole Splice

What if we didn’t do that second
copy? Or the pause?

def splicePreamble():

file = "/Users/sweat/1315/MediaSources/preamble10.wav"

source = makeSound(file)

dest = makeSound(file) # This will be the newly spliced sound

destSample = 17408 # targetIndex starts after "We the" in the new sound

for srcSample in range(33414, 40052): # Where the word "United" is in the sound

setSampleValueAt(dest, destSample, getSampleValueAt(source, srcSample))

destSample = destSample + 1

#for srcSample in range(17408, 26726): # Where the word "People" is in the sound

#setSampleValueAt(dest, destSample, getSampleValueAt(source, srcSample))

#destSample = destSample + 1

#for index in range(1, 1000): #Stick some quiet space after that

#setSampleValueAt(dest, destSample, 0)

#destSample = destSample + 1

play(dest) #Let's hear and return the result

return dest

5

Making Sine Waves

• We can build our own waves using

trigonometry functions like sine or cosine

1

-1

π 2π

Let’s say that we want the sound to play at 440 hz ; that is one cycle in 1/440 sec

= 0.00227 seconds

If our sampling rate is 22,050 samples per second, then for one cycle

we need: 0.00227 (seconds) * 22050 (samples/second) = 50 samples

Get a sample from the sine wave every (2 * pi) / 50 and repeat

Generating a Sine Wave

• To build the sine wave

– Compute sample interval from the sine
function

• samplesPerCycle = (1/freq) * samplingRate

• samplingInterval = (2 * pi) / samplesPerCycle

– Generate blank sound of desired length

– Loop through each sample of the blank sound

• Set it to the next sample from the sine wave

6

Sine Wave Function

def sineWave(frequency, amplitude, duration):

snd = makeEmptySound(duration)

interval = 1.0 / frequency

samplesPerCycle = interval * getSamplingRate(snd)

samplingInterval = (2 * 3.14159) / samplesPerCycle

sampleValue = 0

for pos in range (1, getLength(snd) + 1):

rawSample = sin(sampleValue)

sampleVal = int(amplitude * rawSample)

setSampleValueAt(snd, pos, sampleVal)

sampleValue = sampleValue + samplingInterval

play(snd)

return snd

Did it work?

• Test with different frequencies, durations,
amplitudes

• Save to a file and examine with media tools
– writeSoundTo(snd, “filename.wav”)

• Getting fancier
– Can add sine waves together, just like we did with

.wav files, to generate chords and more interesting
sounds

• Early computers used sine waves, square
waves, and triangle waves to make sound

7

MP3

• Today, many audio files are stored using the MP3 format

• Data is compressed so it requires less space

• Lossless compression
– Instead of storing each sample, what if we only stored the

difference from the last sample?

– The difference is usually much smaller than 32767 to -32768. It
might only be +/- 100, which would require fewer bits to store

• Lossy compression
– Throws away some of the sound, especially at higher frequencies,

that you can’t hear

• E.g. soft sound simultaneously played with a loud sound

• WAV files also compressed, using a lossless compression
technique

MIDI

• Musical Instrument Digital Interface
– Standard for synthesizers so different musical hardware can

interoperate with a computer

– Can specify notes and instruments

– JES has a built-in MIDI player using a piano

• The musical scale, starting at middle C, proceeds as
follows:

C
C sharp
D
D sharp
E
F
F sharp
G
A flat
A

B …

8

MIDI

• The MIDI format assigns a

numerical value to each note. The

table below shows some notes

and their numeric values.

......

69A

68A flat

67G

66F sharp

65F

64E

63D Sharp

62D

61C Sharp

60C (middle C)

Numeric ValueMusical Note

playNote

• The playNote function is:

– playNote(note, duration, velocity)

Note - This is the numeric value corresponding to the note using the table

above. The value can actually range between 0 and 127, so you can use values

below 60 for lower octaves below Middle C, and larger values for higher octaves.

Duration. The duration is how long to play the note in milliseconds. A duration

of 1000 would play the note for one second, while a duration of 250 would play

the note for a quarter of a second.

Volume or Velocity. In a metaphor to a piano, the velocity is how hard you hit the

key and thus corresponds to the volume of the note. A velocity of 0 is silent

while the highest velocity is 127.

9

Sample Programs

def playScale():

for note in range(60, 71):

playNote(note, 1000, 127)

def playSong():

playNote(60, 500, 127) # C

playNote(60, 500, 127) # C

playNote(67, 500, 127) # G

playNote(67, 500, 127) # G

playNote(69, 500, 127) # A

playNote(69, 500, 127) # A

playNote(67, 1000, 127) # G

playNote(65, 500, 127) # F

playNote(65, 500, 127) # F

playNote(64, 500, 127) # E

playNote(64, 500, 127) # E

playNote(62, 500, 127) # D

playNote(62, 500, 127) # D

playNote(60, 1000, 127) # C

