Sound, Part 2

Using range to manipulate
samples by index number

Knowing where we are in the
sound

« More complex operations require us to
know where we are in the sound, which
sample
— Not just process all the samples exactly the

same

« Examples:

— Reversing a sound
* It’s just copying, like we did with pixels
— Changing the frequency of a sound
» Using sampling, like we did with pixels
— Splicing sounds

Increasing volume by sample
index

def increaseVolumeByRange(sound):
for sampleNumber in range(1, getLength(sound) + 1):
value = getSampleValueAt(sound, sampleNumber)
setSampleValueAt(sound, sampleNumber, value * 2)

This really is the same as:
def increaseVolume(sound):
for sample in getSamples(sound):
value = getSample(sample)
setSample(sample,value * 2)

Recipe to play a sound
backwards (Trace it!)

def playBackward(filename):
source = makeSound(filename)
dest = makeSound(filename) Start at end
of sound
srcindex = getLength(source)
for destindex in range(1, getLength(dest) + 1):
srcSample = getSampleValueAt(source, srcindex)
setSampleValueAt(dest, destindex, srcSample)
srcindex = srcindex - 1
€— Work backward

return dest

— Return the processed sound for further use

in the function that calls playBackward

Walkthrough

def playBackward(filename):
source = makeSound(filename)
dest = makeSound(filename)

srcIndex = getLength(source)

for destIndex in range(1, getLength(dest) + 1):
srcSample = getSampleValueAt(source, srcIndex)
setSampleValueAt(dest, destIndex, srcSample)

srcIndex = srcIndex - 1

return dest

12

25

13

source

12 | 25 13

dest

How does this work?

+ We make two copies of the sound

» The srcindex starts at the end, and the destindex goes from 1
to the end.

» Each time through the loop, we copy the sample value from the
srcindex to the destindex

Note that the
destindex is

increasing by 1 each

time through the loop,
but srcindex is

decreasing by 1 each

time through the loop

def playBackward(filename):
source = makeSound(filename)
dest = makeSound(filename)

srcIndex = getLength(source)

for destIndex in range(1, getLength(dest) + 1):
srcSample = getSampleValueAt(source, srcIndex)
setSampleValueAt(dest, destIndex, srcSample)
srcIndex = srcIndex - 1

return dest

Uses?

« Just for fun
« Sound reversals in music, speech, etc...

Alternate Version

« Remember this pseudocode to flip an
image?

for y in the range 1 to imageHeight
for x in the range 1 to imageWidth / 2

pixelLeft = pixel at coordinate (x,y)

pixelRight = pixel at coordinate (imageWidth - x + 1, y)

swap the colors of pixelLeft and PixelRight by:
colorLeft = getColor(pixelLeft)
colorRight = getColor(pixelRight)
set the color of pixelLeft to colorRight
set the color of pixelRight to colorLeft

Alternate Version

def reverseSound(filename):

source = makeSound(filename)

for x in range(1, getLength(source) / 2):
leftPosition = x
rightPosition = getLength(source) - x + 1
leftSample = getSampleValueAt(source, leftPosition)
rightSample = getSampleValueAt(source, rightPosition)
setSampleValueAt(source, leftPosition, rightSample)
setSampleValueAt(source, rightPosition, leftSample)

play(source)
return source

12 | 25 13 | 41 11 | 49

source

Changing Sound Frequencies

» Higher frequency interpreted as higher pitch

— If the sampling rate stays the same this can be
accomplished by eliminating samples

— E.g. eliminate every other sample to “half” the sound

» Lower frequency interpreted as lower pitch
— If the sampling rate stays the same this can be
accomplished by duplicating samples

— E.g. “Double” the sound by having each sample
appear twice

Recipe for lowering the
frequency of a sound by half

def half(filename): This is how a
source = makeSound(filename) sampling synthesizer
dest = makeSound(filename) works!
srcindex = 1

for destindex in range(1, getLength(dest) + 1):
sample = getSampleValueAt(source, int(srcl))
setSampleValueAt(dest, destindex, sample)
srcindex = srcindex \

play(dest) \ Here are the

return dest pieces that

do it

L}
C h a n g | n g def copyBarbsFaceLarger():
barbf=getMediaPath("barbara.jpg")
M barb = makePicture(barbf)
p I‘tC h Of canvasf = getMediaPath("7inX95in.jpg") 1
canvas = makePicture(canvasf)

sourceX =45
for targetX in range(100,100+((200-45)*2)):

sound vs. Cerev-2

for targetY in range(100,100+((200-25)*2)):
px = getPixel(barb,int(sourceX),int(sourceY))

C h a n g i n g color = getColor(px)

setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 0.5

pICtu re Slze s::vvu(ll;t;?lz()=sourceX+0+5
show(canvas)
def half(filename): return canvas

source = makeSound(filename)
dest = makeSound(filename)

srcIndex = 1

for destIndex in range(1, getLength(dest) + 1):
sample = getSampleValueAt(source, int(srcIndex))
setSampleValueAt(dest, destIndex, sample)
srcIndex = srcIndex + 0.5

play(dest)

return dest

Both of them are sampling

» Both of them have three parts:
1. Initialization - objects are set up
2. A loop where samples or pixels are copied
from one place to another

+ To decrease sound frequency or increase image
size, we take each sample/pixel twice

* In both cases, we do that by incrementing the
source index by 0.5 instead of 1 and taking the
integer of the index

3. Finish up and return the result

Recipe to double the frequency

of a sound
Here’s the critical piece:
def double(filename): We skip every other
source = makeSound(filename) sample in the source!

target = makeSound(filename)

targetindex =1

for sourcelndex in range(1, getLength(source) + 1, 2):
value = getSampleValueAt(source, sourcelndex)
setSampleValueAt(target, targetindex, value)
targetindex = targetindex + 1

#Zero out the rest of the target sound -- it's only half full!

Zeros are silent.

for secondHalf in range(getLength(target)/2, getLength(target) - 1):
setSampleValueAt(target, targetindex, 0)
targetindex = targetindex + 1

play(target)

return target

What happens if we don’t "zero out"
the end?

Try this out!

def double(filename):

source = makeSound(filename)

target = makeSound(filename)

targetindex =1

for sourcelndex in range(1, getLength(source)+1, 2):
value = getSampleValueAt(source, sourcelndex)
setSampleValueAt(target, targetindex, value)
targetindex = targetindex + 1

#Clear out the rest of the target sound -- it's only half full!

#for secondHalf in range(getLength(target)/2, getLength(target) - 1):

setSampleValueAt(target,targetindex,0)

targetindex = targetindex + 1

play(target) “Switch off” these lines of
return target g
code by commenting them out.

Splicing Sounds

» Splicing gets its name from literally cutting
and pasting pieces of magnetic tape
together

« Easy to do in a program if each sound is in
its own file

Merging Separate Sounds

def merge():
kenricksound = makeSound("kenrick.wav")
issound = makeSound("is.wav")
target = makeSound(getMediaPath("sec3silence.wav"))

index =1

Copy in "Kenrick"

for src in range(1, getLength(kenricksound)):
value = getSampleValueAt(kenricksound, src)
setSampleValueAt(target, index, value)
index = index + 1

Copy in 0.1 second pause (silence)

for src in range(1, int(0.1 * getSamplingRate(target))):
setSampleValueAt(target, index, 0)
index = index + 1

Copy in "is"

for src in range(1, getLength(issound)):
value = getSampleValueAt(issound, src)
setSampleValueAt(target, index, value)
index = index + 1

play(target)
return(target)

Merging Sounds

« What if we didn’t add the pause?

 What if the sounds were recorded at
different volumes, how might we make
them match?

Changing the splice

« What if we wanted to increase or decrease
the volume of an inserted word?
— Simple! Multiply each sample by something
as it’s pulled from the source.
» Could we do something like slowly
increase volume (emphasis) or normalize
the sound?

— Sure! Just like we’ve done in past programs,
but instead of working across all samples, we
work across only the samples in that sound!

Making more complex sounds

 We know that natural sounds are often the
combination of multiple sounds.

» Adding waves in physics or math is hard.

 In computer science, it's easy! Simply
add the samples at the same index in the
two waves:

for srcSample in range(1, getLength(source)+1):
destValue = getSampleValueAt(dest, srcSample)
srcValue = getSampleValue At(source, srcSample)
setSampleValueAt(source, srcSampIe,|srcVaIue+destVaIue) |

10

Adding sounds -~ 7~
nE

The first two are sine waves

generated in Excel.

The third is just the sum of E /\ \
the first two columns. \

a+b=c /\\/\\/

Uses for adding sounds

« We can mix sounds

— We even know how to change the volumes of
the two sounds, even over time (e.g., fading in
or fading out)

 We can create echoes

» We can add sine (or other) waves together
to create kinds of instruments/sounds that
do not physically exist, but which sound
interesting and complex

11

A function for adding two sounds

def addSoundinto(sound1, sound2):

for sampleNmr in range(1, getLength(sound1)+1):
sample1 = getSampleValueAt(sound1, sampleNmr)
sample2 = getSampleValueAt(sound2, sampleNmr)
setSampleValueAt(sound2, sampleNmr, sample1 + sample2)

Notice that this adds sound1 and sound
by adding sound1 info sound2

Making a chord by mixing three
notes

>>> setMediaFolder()

New media folder: C:\mediasources\

>>> getMediaPath("bassoon-c4.wav")
'C:\\mediasources\\bassoon-c4.wav'

>>> c4=makeSound(getMediaPath("bassoon-c4.wav"))
>>> e4=makeSound(getMediaPath("bassoon-e4.wav"))
>>> gd=makeSound(getMediaPath("bassoon-g4.wav"))
>>> addSoundInto(e4,c4)

>>> play(c4)

>>> addSoundlInto(g4,c4)

>>> play(c4)

12

Adding sounds with a delay

def makeChord(soundi1, sound2, sound3):
for index in range(1, getLength(sound1)):
s1Sample = getSampleValueAt(sound1, index)
if index > 1000:
s2Sample = getSampleValueAt(sound2, index - 1000)
setSampleValueAt(soundi, index, s1Sample + s2Sample)
if index > 2000:
s3Sample = getSampleValueAt(sound3, index - 2000)
setSampleValueAt(soundi, index, s1Sample + s2Sample + s3Sample)

. Note that in this
-Add in sound?2 after 1000 samples version we’re
-Add in sound3 after 2000 samples adding into
sound1!

13

