
1

Sound, Part 2

Using range to manipulate

samples by index number

Knowing where we are in the
sound

• More complex operations require us to
know where we are in the sound, which
sample
– Not just process all the samples exactly the

same

• Examples:
– Reversing a sound

• It’s just copying, like we did with pixels

– Changing the frequency of a sound
• Using sampling, like we did with pixels

– Splicing sounds

2

Increasing volume by sample

index

def increaseVolumeByRange(sound):

for sampleNumber in range(1, getLength(sound) + 1):
value = getSampleValueAt(sound, sampleNumber)

setSampleValueAt(sound, sampleNumber, value * 2)

This really is the same as:

def increaseVolume(sound):
for sample in getSamples(sound):

value = getSample(sample)
setSample(sample,value * 2)

Recipe to play a sound
backwards (Trace it!)

def playBackward(filename):

source = makeSound(filename)
dest = makeSound(filename)

srcIndex = getLength(source)

for destIndex in range(1, getLength(dest) + 1):
srcSample = getSampleValueAt(source, srcIndex)
setSampleValueAt(dest, destIndex, srcSample)
srcIndex = srcIndex - 1

return dest
Return the processed sound for further use

in the function that calls playBackward

Work backward

Start at end

of sound

3

def playBackward(filename):

source = makeSound(filename)

dest = makeSound(filename)

srcIndex = getLength(source)

for destIndex in range(1, getLength(dest) + 1):

srcSample = getSampleValueAt(source, srcIndex)

setSampleValueAt(dest, destIndex, srcSample)

srcIndex = srcIndex - 1

return dest

Walkthrough

12 25 13 12 25 13

source dest

How does this work?

• We make two copies of the sound

• The srcIndex starts at the end, and the destIndex goes from 1
to the end.

• Each time through the loop, we copy the sample value from the
srcIndex to the destIndex

Note that the

destIndex is

increasing by 1 each

time through the loop,

but srcIndex is

decreasing by 1 each

time through the loop

def playBackward(filename):

source = makeSound(filename)

dest = makeSound(filename)

srcIndex = getLength(source)

for destIndex in range(1, getLength(dest) + 1):

srcSample = getSampleValueAt(source, srcIndex)

setSampleValueAt(dest, destIndex, srcSample)

srcIndex = srcIndex - 1

return dest

4

Uses?

• Just for fun

• Sound reversals in music, speech, etc…

Alternate Version

• Remember this pseudocode to flip an

image?

for y in the range 1 to imageHeight

for x in the range 1 to imageWidth / 2

pixelLeft = pixel at coordinate (x,y)

pixelRight = pixel at coordinate (imageWidth - x + 1, y)

swap the colors of pixelLeft and PixelRight by:

colorLeft = getColor(pixelLeft)

colorRight = getColor(pixelRight)

set the color of pixelLeft to colorRight

set the color of pixelRight to colorLeft

5

def reverseSound(filename):

source = makeSound(filename)

for x in range(1, getLength(source) / 2):

leftPosition = x

rightPosition = getLength(source) - x + 1

leftSample = getSampleValueAt(source, leftPosition)

rightSample = getSampleValueAt(source, rightPosition)

setSampleValueAt(source, leftPosition, rightSample)

setSampleValueAt(source, rightPosition, leftSample)

play(source)

return source

Alternate Version

12 25 13

source

41 11 49

Changing Sound Frequencies

• Higher frequency interpreted as higher pitch

– If the sampling rate stays the same this can be

accomplished by eliminating samples

– E.g. eliminate every other sample to “half” the sound

• Lower frequency interpreted as lower pitch

– If the sampling rate stays the same this can be

accomplished by duplicating samples

– E.g. “Double” the sound by having each sample

appear twice

6

Recipe for lowering the
frequency of a sound by half

def half(filename):

source = makeSound(filename)

dest = makeSound(filename)

srcIndex = 1

for destIndex in range(1, getLength(dest) + 1):

sample = getSampleValueAt(source, int(srcIndex))

setSampleValueAt(dest, destIndex, sample)

srcIndex = srcIndex + 0.5

play(dest)

return dest

This is how a

sampling synthesizer

works!

Here are the

pieces that

do it

Changing

pitch of
sound vs.

changing

picture size
def half(filename):

source = makeSound(filename)

dest = makeSound(filename)

srcIndex = 1

for destIndex in range(1, getLength(dest) + 1):

sample = getSampleValueAt(source, int(srcIndex))

setSampleValueAt(dest, destIndex, sample)

srcIndex = srcIndex + 0.5

play(dest)

return dest

def copyBarbsFaceLarger():
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)

canvasf = getMediaPath("7inX95in.jpg")

canvas = makePicture(canvasf)

sourceX = 45

for targetX in range(100,100+((200-45)*2)):

sourceY = 25

for targetY in range(100,100+((200-25)*2)):
px = getPixel(barb,int(sourceX),int(sourceY))

color = getColor(px)

setColor(getPixel(canvas,targetX,targetY), color)

sourceY = sourceY + 0.5

sourceX = sourceX + 0.5
show(barb)

show(canvas)

return canvas

1

3

2

1

3

2

7

Both of them are sampling

• Both of them have three parts:
1. Initialization - objects are set up

2. A loop where samples or pixels are copied
from one place to another
• To decrease sound frequency or increase image

size, we take each sample/pixel twice

• In both cases, we do that by incrementing the
source index by 0.5 instead of 1 and taking the
integer of the index

3. Finish up and return the result

Recipe to double the frequency
of a sound

def double(filename):

source = makeSound(filename)
target = makeSound(filename)

targetIndex = 1
for sourceIndex in range(1, getLength(source) + 1, 2):

value = getSampleValueAt(source, sourceIndex)

setSampleValueAt(target, targetIndex, value)
targetIndex = targetIndex + 1

#Zero out the rest of the target sound -- it's only half full!
Zeros are silent.
for secondHalf in range(getLength(target)/2, getLength(target) - 1):

setSampleValueAt(target, targetIndex, 0)
targetIndex = targetIndex + 1

play(target)
return target

Here’s the critical piece:

We skip every other

sample in the source!

8

What happens if we don’t "zero out"
the end?

Try this out!

def double(filename):
source = makeSound(filename)
target = makeSound(filename)

targetIndex = 1
for sourceIndex in range(1, getLength(source)+1, 2):

value = getSampleValueAt(source, sourceIndex)

setSampleValueAt(target, targetIndex, value)
targetIndex = targetIndex + 1

#Clear out the rest of the target sound -- it's only half full!
#for secondHalf in range(getLength(target)/2, getLength(target) - 1):
setSampleValueAt(target,targetIndex,0)
targetIndex = targetIndex + 1

play(target)

return target
“Switch off” these lines of

code by commenting them out.

Splicing Sounds

• Splicing gets its name from literally cutting

and pasting pieces of magnetic tape

together

• Easy to do in a program if each sound is in

its own file

9

Merging Separate Sounds
def merge():

kenricksound = makeSound("kenrick.wav")
issound = makeSound("is.wav")
target = makeSound(getMediaPath("sec3silence.wav"))

index = 1
Copy in "Kenrick"
for src in range(1, getLength(kenricksound)):

value = getSampleValueAt(kenricksound, src)
setSampleValueAt(target, index, value)
index = index + 1

Copy in 0.1 second pause (silence)
for src in range(1, int(0.1 * getSamplingRate(target))):

setSampleValueAt(target, index, 0)
index = index + 1

Copy in "is"
for src in range(1, getLength(issound)):

value = getSampleValueAt(issound, src)
setSampleValueAt(target, index, value)
index = index + 1

play(target)
return(target)

Merging Sounds

• What if we didn’t add the pause?

• What if the sounds were recorded at

different volumes, how might we make
them match?

10

Changing the splice

• What if we wanted to increase or decrease

the volume of an inserted word?

– Simple! Multiply each sample by something
as it’s pulled from the source.

• Could we do something like slowly

increase volume (emphasis) or normalize

the sound?

– Sure! Just like we’ve done in past programs,
but instead of working across all samples, we
work across only the samples in that sound!

Making more complex sounds

• We know that natural sounds are often the

combination of multiple sounds.

• Adding waves in physics or math is hard.

• In computer science, it’s easy! Simply

add the samples at the same index in the

two waves:

for srcSample in range(1, getLength(source)+1):

destValue = getSampleValueAt(dest, srcSample)

srcValue = getSampleValueAt(source, srcSample)

setSampleValueAt(source, srcSample, srcValue+destValue)

11

Adding sounds

The first two are sine waves

generated in Excel.

The third is just the sum of

the first two columns.

a

b

a + b = c

Uses for adding sounds

• We can mix sounds
– We even know how to change the volumes of

the two sounds, even over time (e.g., fading in
or fading out)

• We can create echoes

• We can add sine (or other) waves together
to create kinds of instruments/sounds that
do not physically exist, but which sound
interesting and complex

12

A function for adding two sounds

def addSoundInto(sound1, sound2):

for sampleNmr in range(1, getLength(sound1)+1):

sample1 = getSampleValueAt(sound1, sampleNmr)

sample2 = getSampleValueAt(sound2, sampleNmr)

setSampleValueAt(sound2, sampleNmr, sample1 + sample2)

Notice that this adds sound1 and sound

by adding sound1 into sound2

Making a chord by mixing three
notes

>>> setMediaFolder()

New media folder: C:\mediasources\

>>> getMediaPath("bassoon-c4.wav")

'C:\\mediasources\\bassoon-c4.wav'

>>> c4=makeSound(getMediaPath("bassoon-c4.wav"))

>>> e4=makeSound(getMediaPath("bassoon-e4.wav"))

>>> g4=makeSound(getMediaPath("bassoon-g4.wav"))

>>> addSoundInto(e4,c4)

>>> play(c4)

>>> addSoundInto(g4,c4)

>>> play(c4)

13

Adding sounds with a delay

def makeChord(sound1, sound2, sound3):

for index in range(1, getLength(sound1)):
s1Sample = getSampleValueAt(sound1, index)

if index > 1000:
s2Sample = getSampleValueAt(sound2, index - 1000)
setSampleValueAt(sound1, index, s1Sample + s2Sample)

if index > 2000:
s3Sample = getSampleValueAt(sound3, index - 2000)
setSampleValueAt(sound1, index, s1Sample + s2Sample + s3Sample)

-Add in sound2 after 1000 samples

-Add in sound3 after 2000 samples

Note that in this

version we’re

adding into

sound1!

