Sound Encoding and
Manipulation

What is sound?

» Waves of air (or water if underwater)
pressure

5

How sound works:
Acoustics, the physics of sound

» Sounds are waves of air

pressure

— Sound comes in cycles Auplince

— The frequency of a wave isfr=r!

topofcyc]:)
the number of cycles per

second (cps), or Hertz

» (Complex sounds have

more than one frequency
in them.)
— The amplitude is the
maximum height of the . e cyee

wave

Decibel is a logarithmic
measure

* A decibel is a ratio between two
intensities: 10 * log4,(14/1,)

— As an absolute measure, it's in comparison to
threshold of audibility

— 0 dB can’t be heard.
— Normal speech is 60 dB.
— A shout is about 80 dB

Intensity of Sound

* Decibel Scale

Decibel Scale

(e}
Threshald of pain — 140
let Arcraft at
%0 300 m atitude
Highwvay traffic __|
at30m 75
o |— Quiet restaurant
Residential __| 4
area at night
20 = Rustling of leawes
e 0 |—Threshaold of hearing

Volume and pitch:
Psychoacoustics, the psychology of
sound

» Our perception of volume is related (logarithmically) to
changes in amplitude
— If the amplitude doubles, it’s about a 3 decibel (dB) change
» Our perception of pitch is related (logarithmically) to
changes in frequency
— Higher frequencies are perceived as higher pitches
— We can hear between 5 Hz and 20,000 Hz (20 kHz)
— Middle C is 262 Hz
+ It's strange, but our hearing works on ratios not
differences, e.qg., for pitch.

— We hear the difference between 200 Hz and 400 Hz, as the
same as 500 Hz and 1000 Hz

— Similarly, 200 Hz to 600 Hz, and 1000 Hz to 3000 Hz

Demonstrating Sound

MediaTools

|Record Viewer| _ﬁecord] _;Stol; Play

"Spikes"

Signgfl| (Spletrum| Sonogram| (Magnifier

//

Fourier transform
(FFT)

f

:?lay:_'.._PlaY EBefore -':Pla'f After:' -t:ompress Wave View "E'xpand Wawve View

‘Show FET at Cursor
Index: 141159
Value; 3016

Digitizing Sound: How do we
get that into numbers?

Remember in calculus,
estimating the curve by
creating rectangles?

We can do the same to

estimate the sound curve

— Analog-to-digital
conversion (ADC) will give
us the amplitude at an
instant as a number: a
sample

— How many samples do we
need?

Nyquist Theorem

* We need twice as many samples as the
maximum frequency in order to represent (and
recreate, later) the original sound.

» The number of samples recorded per second is
the sampling rate
— If we capture 8000 samples per second, the highest
frequency we can capture is 4000 Hz
» That's how phones work
— If we capture more than 44,000 samples per second,
we capture everything that we can hear (max 22,000
Hz)
+ CD quality is 44,100 samples per second

Digitizing sound in the computer

« Each sample is stored as a number (two bytes)

« What's the range of available combinations?
— 16 bits, 26 = 65,536
— But we want both positive and negative values
» To indicate compressions and rarefactions.
— What if we use one bit to indicate positive (0) or
negative (1)?
— That leaves us with 15 bits
— 15 bits, 215 = 32,768
— One of those combinations will stand for zero

» We'll use a “positive” one, so that’s one less pattern for
positives

+/- 32K

« Each sample can be between -32,768 and
32,767

Why such a bizarre number?

Because 32,768 + 32,767 + 1 = 216
<0 >0 ((i.e. 16 bits, or 2 bytes

Compare this to 0..255 for light intensity

(i.e. 8 bits or 1 byte)

Sounds as arrays

« Samples are just stored one right after the other
in the computer’'s memory
« That's called an array (Like pixels in a picture)

— It’'s an especially efficient (quickly accessed) memory
structure

53 kR 1a 10 -1

Working with sounds

« We’'ll use pickAFile and makeSound.
— We want .wav files

« We'll use getSamples to get all the sample
objects out of a sound

« We can also get the value at any index with
getSampleValueAt

» Sounds also know their length (getLength) and
their sampling rate (getSamplingRate)

« Can save sounds with
writeSoundTo(sound, ’file.wav”)

Demonstrating Working with
Sound in JES

>>> filename = pickAFile()

>>> print filename

c:\preamble.wav

>>> sound = makeSound(filename)
>>> print sound

Sound of length 421109

>>> samples = getSamples(sound)
>>> print samples

Samples, length 421109

>>> print getSampleValueAt(sound, 1)
36

>>> print getSampleValueAt(sound, 2)
29

Demonstrating working with
samples

>>> print getLength(sound)

220568

>>> print getSamplingRate(sound)

22050.0

>>> print getSampleValueAt(sound, 220568)
68

>>> print getSampleValue At(sound, 220570)
I wasn't able to do what you wanted.

The error java.lang. ArrayIndexOutOfBoundsException has occured
Please check line 0 of

>>> print getSampleValueAt(sound, 1)

36

>>> setSampleValueAt(sound, 1, 12)

>>> print getSampleValueAt(sound, 1)

12

Working with Samples

» We can get sample objects out of a sound

with getSamples(sound) or
getSampleObjectAt(sound, index)

» A sample object remembers its sound, so
if you change the sample object, the
sound gets changed.

« Sample objects understand
getSample(sample) and
setSample(sample, value)

Example: Manipulating Samples

>>> soundfile=pickAFile()

>>> sound=makeSound(soundfile)

>>> sample=getSampleObjectAt(sound, 1)
>>> print sample

Sample at 1 value at 59

>>> print sound

Sound of length 387573

>>> print getSound(sample)

Sound of length 387573

>>> print getSample(sample)

59

>>> setSample(sample, 29)

>>> print getSample(sample)

29 Can you hear the difference?

“But there are thousands of
these samples!”

* How do we do something to these
samples to manipulate them, when there
are thousands of them per second?

» We use a loop and get the computer to
iterate in order to do something to each
sample.

» An example loop:

for sample in getSamples(sound):
value = getSample(sample)
setSample(sample, value)

Recipe to Increase the Volume

def increaseVolume(sound):
for sample in getSamples(sound):
value = getSample(sample)
setSample(sample, value * 2)

Using it:

>>> setMediaPath()

>>> s = makeSound(“gettysburg10.wav")
>>> increaseVolume(s)

>>> play(s)

>>> writeSoundTo(s, "louder-g10.wav")

Starting the loop

+ getSamples(sound)
returns a sequence of

all the sample objects def i Vol d):
in the sound. ef increaseVolume(sound):

» The for loop makes

—» [for sample in getSamples(sound):

value = getSample(sample)

sample be the first setSample(sample, value * 2)

sample as the block

is started.
Compare: Need to use getSample

sample to get the actual value
for pixel in getPixels(picture): /
/Ny
getSamples 53 \ 39 1a 10 =1

(sound)

10

Executing the block

+ We get the value of
the sample named
sample.

def increaseVolume(sound):

for sample in getSamples(sound):
value = getSample(sample)

« Wesetthevalueof __

setSample(sample, value * 2)

the sample to be the
current value
(variable value) times

2 sample

~L

getSamples e \ T
(sound)

1a 10 -1

Next sample

* Back to the top of the def increaseVolume(sound):

loop, and sample will
now be the second
sample in the
sequence.

sample

[for sample in getSamples(sound):

value = getSample(sample)
setSample(sample, value * 2)

getSamples
(sound)

118 L

1& 10 -1

11

And increase that next sample

* We set the value of

. def increaseVolume(sound):
this sample to be the ()

current value value = getSample(sample)
(2var|able value) times [setSample(sample, value *2) |

sample

getSamples
(sound)

118 78 1& 10 -1

for sample in getSamples(sound):

And on through the sequence

* The loop keeps
repeating until all the
samples are doubled value = getSample(sample)

setSample(sample, value * 2)

def increaseVolume(sound):

sample

getSamples - \

(scund)

for sample in getSamples(sound):

12

How are we sure that that
worked?

>>> prlnt S Play Play Before (Play After Compress Wave View (Expand Wave View
Show FET at Cursor

Sound of length 220567 T
e

>>> print f
C:\mediasources\gettysburg10.wav
>>> soriginal = makeSound(f)
>>> print getSampleValueAt(s, 1)
118

>>> print getSampleValueAt(soriginal, 1)
iz> print getSampleValueAt(s, 2)

Z§> print getSampleValueAt(soriginal, 2)
iz> print getSampleValueAt(s, 1000)

-80
>>> print getSampleValueAt(soriginal, 1000)
-40

Decreasing the volume

def decreaseVolume(sound):
for sample in getSamples(sound):

value = getSample(sample)

setSample(sample, value * 0.5)
This works just like

increaseVolume, but
we’re lowering each
sample by 50% instead of
doubling it.

13

Recognize some similarities?

def increaseVolume(sound): def increaseRed(picture):
for sample in getSamples(sound): for p in getPixels(picture):
value = getSample(sample) <> value = getRed(p)
setSample(sample, value * 2) setRed(p, value*1.2)
def decreaseVolume(sound): def decreaseRed(picture):
for sample in getSamples(sound): for p in getPixels(picture):
value = getSample(sample) <> value = getRed(p)
setSample(sample, value * 0.5) setRed(p, value*0.5)

Does increasing the volume
change the volume setting?

* No
— The physical volume setting indicates an
upper bound, the potential loudest sound.

— Within that potential, sounds can be louder or
softer
» They can fill that space, but might not
» E.g. TV commercial volume louder than show

» What happens if we keep calling
increaseVolume over and over again?

14

Avoiding clipping

Why are we being so careful to stay within
range? What if we just multiplied all the
samples by some big number and let
some of them go over 32,7677

The result then is clipping

— Clipping: The awful, buzzing noise whenever
the sound volume is beyond the maximum
that your sound system can handle.

Maximizing volume

How, then, do we get maximal volume?
— (e.g. automatic recording level)

It's a three-step process:
1. find the current loudest value (largest
sample).
2. find how much we can increase/decrease
that value to fill the available space

We want to find the amplification factor amp,
where amp * loudest = 32767

In other words: amp = 32767/loudest
3. amplify each sample by multiplying it by amp

15

Maxing (normalizing) the sound

def normalize(sound): This loop finds the loudest
largest = 0 / value between the two #’s
for s in getSamples(sound):

largest = max(largest, getSample(s))
amplification = 32767.0 / largest

print "Largest sample value in original sound was", largest
print ” Amplification multiplier is", amplification

for s in getSamples(sound):
louder = amplification * getSample(s)
setSample(s, louder)

This loop actually amplifies
the sound

max()

» max() is a function
that takes any number
of parameters, and 3

returns the largest. >>> print max(4, 67, 98, -1)
» Thereis also a 98

function min() which
works similarly but
returns the minimum

« We could also write
these ourselves, like
we did on homework
#2

>>> print max(1, 2, 3)

16

Or: use if instead of max

def normalize(sound): Check each in

largest = 0 turn to see if it’s the largest
for s in getSamples(sound): / So far

if getSample(s) > largest:
largest = getSample(s)
= . st

print "Largest sample value in original sound was", largest
print ” Amplification factor is", amplification
for s in getSamples(sound):

louder = amplification * getSample(s)

setSample(s, louder)

Aside: positive and negative
extremes assumed to be equal

« We're making an assumption here that the
maximum positive value is also the maximum
negative value.

— That should be true for the sounds we deal with, but
isn’t necessarily true
» Try adding a constant to every sample.
— That makes it non-cyclic

* |.e. the compressions and rarefactions in the sound wave are
not equal

— But it’s fairly subtle what’s happening to the sound.

17

Processing only part of the sound

 What if we wanted to increase or decrease
the volume of only part of the sound?

* Q: How would we do it?
* A: We'd have to use a range() function
with our for loop

— Just like when we manipulated only part of a
picture by using range() in conjunction with
getPixels()

— More about this next time....

18

