
1

Sound Encoding and

Manipulation

What is sound?

• Waves of air (or water if underwater)

pressure

2

How sound works:
Acoustics, the physics of sound

• Sounds are waves of air

pressure

– Sound comes in cycles

– The frequency of a wave is

the number of cycles per

second (cps), or Hertz

• (Complex sounds have

more than one frequency

in them.)

– The amplitude is the

maximum height of the

wave

Decibel is a logarithmic
measure

• A decibel is a ratio between two

intensities: 10 * log10(I1/I2)

– As an absolute measure, it’s in comparison to
threshold of audibility

– 0 dB can’t be heard.

– Normal speech is 60 dB.

– A shout is about 80 dB

3

Intensity of Sound

• Decibel Scale

Volume and pitch:

Psychoacoustics, the psychology of

sound

• Our perception of volume is related (logarithmically) to
changes in amplitude
– If the amplitude doubles, it’s about a 3 decibel (dB) change

• Our perception of pitch is related (logarithmically) to
changes in frequency
– Higher frequencies are perceived as higher pitches

– We can hear between 5 Hz and 20,000 Hz (20 kHz)

– Middle C is 262 Hz

• It’s strange, but our hearing works on ratios not
differences, e.g., for pitch.
– We hear the difference between 200 Hz and 400 Hz, as the

same as 500 Hz and 1000 Hz

– Similarly, 200 Hz to 600 Hz, and 1000 Hz to 3000 Hz

4

Demonstrating Sound
MediaTools

Fourier transform

(FFT)

Digitizing Sound: How do we
get that into numbers?

• Remember in calculus,
estimating the curve by
creating rectangles?

• We can do the same to
estimate the sound curve
– Analog-to-digital

conversion (ADC) will give
us the amplitude at an
instant as a number: a
sample

– How many samples do we
need?

5

Nyquist Theorem

• We need twice as many samples as the
maximum frequency in order to represent (and
recreate, later) the original sound.

• The number of samples recorded per second is
the sampling rate
– If we capture 8000 samples per second, the highest

frequency we can capture is 4000 Hz
• That’s how phones work

– If we capture more than 44,000 samples per second,
we capture everything that we can hear (max 22,000
Hz)

• CD quality is 44,100 samples per second

Digitizing sound in the computer

• Each sample is stored as a number (two bytes)

• What’s the range of available combinations?
– 16 bits, 216 = 65,536

– But we want both positive and negative values
• To indicate compressions and rarefactions.

– What if we use one bit to indicate positive (0) or
negative (1)?

– That leaves us with 15 bits

– 15 bits, 215 = 32,768

– One of those combinations will stand for zero
• We’ll use a “positive” one, so that’s one less pattern for

positives

6

+/- 32K

• Each sample can be between -32,768 and

32,767

Compare this to 0..255 for light intensity

(i.e. 8 bits or 1 byte)

Why such a bizarre number?

Because 32,768 + 32,767 + 1 = 216

i.e. 16 bits, or 2 bytes< 0 > 0 0

Sounds as arrays

• Samples are just stored one right after the other
in the computer’s memory

• That’s called an array
– It’s an especially efficient (quickly accessed) memory

structure

(Like pixels in a picture)

7

Working with sounds

• We’ll use pickAFile and makeSound.
– We want .wav files

• We’ll use getSamples to get all the sample
objects out of a sound

• We can also get the value at any index with
getSampleValueAt

• Sounds also know their length (getLength) and
their sampling rate (getSamplingRate)

• Can save sounds with
writeSoundTo(sound,”file.wav”)

Demonstrating Working with
Sound in JES

>>> filename = pickAFile()

>>> print filename

c:\preamble.wav

>>> sound = makeSound(filename)

>>> print sound

Sound of length 421109

>>> samples = getSamples(sound)

>>> print samples

Samples, length 421109

>>> print getSampleValueAt(sound, 1)

36

>>> print getSampleValueAt(sound, 2)

29

8

Demonstrating working with
samples

>>> print getLength(sound)

220568

>>> print getSamplingRate(sound)

22050.0

>>> print getSampleValueAt(sound, 220568)

68

>>> print getSampleValueAt(sound, 220570)

I wasn't able to do what you wanted.

The error java.lang.ArrayIndexOutOfBoundsException has occured

Please check line 0 of

>>> print getSampleValueAt(sound, 1)

36

>>> setSampleValueAt(sound,1, 12)

>>> print getSampleValueAt(sound, 1)

12

Working with Samples

• We can get sample objects out of a sound

with getSamples(sound) or

getSampleObjectAt(sound, index)

• A sample object remembers its sound, so

if you change the sample object, the

sound gets changed.

• Sample objects understand

getSample(sample) and

setSample(sample, value)

9

Example: Manipulating Samples

>>> soundfile=pickAFile()

>>> sound=makeSound(soundfile)

>>> sample=getSampleObjectAt(sound, 1)

>>> print sample

Sample at 1 value at 59

>>> print sound

Sound of length 387573

>>> print getSound(sample)

Sound of length 387573

>>> print getSample(sample)

59

>>> setSample(sample, 29)

>>> print getSample(sample)

29 Can you hear the difference?

“But there are thousands of
these samples!”

• How do we do something to these

samples to manipulate them, when there

are thousands of them per second?

• We use a loop and get the computer to

iterate in order to do something to each

sample.

• An example loop:

for sample in getSamples(sound):

value = getSample(sample)

setSample(sample, value)

10

Recipe to Increase the Volume

def increaseVolume(sound):

for sample in getSamples(sound):
value = getSample(sample)

setSample(sample, value * 2)

Using it:
>>> setMediaPath()

>>> s = makeSound(“gettysburg10.wav")

>>> increaseVolume(s)

>>> play(s)

>>> writeSoundTo(s, "louder-g10.wav")

Starting the loop

def increaseVolume(sound):

for sample in getSamples(sound):

value = getSample(sample)

setSample(sample, value * 2)

• getSamples(sound)
returns a sequence of
all the sample objects
in the sound.

• The for loop makes
sample be the first
sample as the block
is started.

Compare:

for pixel in getPixels(picture):

Need to use getSample

to get the actual value

11

Executing the block

• We get the value of
the sample named
sample.

• We set the value of
the sample to be the
current value
(variable value) times
2

def increaseVolume(sound):

for sample in getSamples(sound):

value = getSample(sample)

setSample(sample, value * 2)

Next sample

• Back to the top of the
loop, and sample will
now be the second
sample in the
sequence.

def increaseVolume(sound):

for sample in getSamples(sound):

value = getSample(sample)

setSample(sample, value * 2)

12

And increase that next sample

• We set the value of
this sample to be the
current value
(variable value) times
2.

def increaseVolume(sound):

for sample in getSamples(sound):

value = getSample(sample)

setSample(sample, value * 2)

And on through the sequence

• The loop keeps
repeating until all the
samples are doubled

def increaseVolume(sound):

for sample in getSamples(sound):

value = getSample(sample)

setSample(sample, value * 2)

13

How are we sure that that
worked?

>>> print s

Sound of length 220567

>>> print f

C:\mediasources\gettysburg10.wav

>>> soriginal = makeSound(f)

>>> print getSampleValueAt(s, 1)

118

>>> print getSampleValueAt(soriginal, 1)

59

>>> print getSampleValueAt(s, 2)

78

>>> print getSampleValueAt(soriginal, 2)

39

>>> print getSampleValueAt(s, 1000)

-80

>>> print getSampleValueAt(soriginal, 1000)

-40

Decreasing the volume

def decreaseVolume(sound):

for sample in getSamples(sound):
value = getSample(sample)

setSample(sample, value * 0.5)

This works just like

increaseVolume, but

we’re lowering each

sample by 50% instead of

doubling it.

14

Recognize some similarities?

def decreaseVolume(sound):

for sample in getSamples(sound):

value = getSample(sample)

setSample(sample, value * 0.5)

def increaseVolume(sound):

for sample in getSamples(sound):

value = getSample(sample)

setSample(sample, value * 2)

def decreaseRed(picture):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value*0.5)

def increaseRed(picture):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value*1.2)

Does increasing the volume
change the volume setting?

• No

– The physical volume setting indicates an
upper bound, the potential loudest sound.

– Within that potential, sounds can be louder or
softer

• They can fill that space, but might not

• E.g. TV commercial volume louder than show

• What happens if we keep calling
increaseVolume over and over again?

15

Avoiding clipping

• Why are we being so careful to stay within

range? What if we just multiplied all the

samples by some big number and let

some of them go over 32,767?

• The result then is clipping

– Clipping: The awful, buzzing noise whenever
the sound volume is beyond the maximum
that your sound system can handle.

Maximizing volume

• How, then, do we get maximal volume?

– (e.g. automatic recording level)

• It’s a three-step process:

1. find the current loudest value (largest
sample).

2. find how much we can increase/decrease

that value to fill the available space

• We want to find the amplification factor amp,

where amp * loudest = 32767

• In other words: amp = 32767/loudest

3. amplify each sample by multiplying it by amp

16

Maxing (normalizing) the sound

def normalize(sound):

largest = 0

for s in getSamples(sound):

largest = max(largest, getSample(s))

amplification = 32767.0 / largest

print "Largest sample value in original sound was", largest

print ”Amplification multiplier is", amplification

for s in getSamples(sound):

louder = amplification * getSample(s)

setSample(s, louder)

This loop finds the loudest

value between the two #’s

This loop actually amplifies

the sound

max()
• max() is a function

that takes any number
of parameters, and

returns the largest.

• There is also a
function min() which
works similarly but
returns the minimum

• We could also write
these ourselves, like

we did on homework
#2

>>> print max(1, 2, 3)

3

>>> print max(4, 67, 98, -1)

98

17

Or: use if instead of max
def normalize(sound):

largest = 0

for s in getSamples(sound):

if getSample(s) > largest:

largest = getSample(s)

amplification = 32767.0 / largest

print "Largest sample value in original sound was", largest

print ”Amplification factor is", amplification

for s in getSamples(sound):

louder = amplification * getSample(s)

setSample(s, louder)

Check each in

turn to see if it’s the largest

so far

Aside: positive and negative
extremes assumed to be equal

• We’re making an assumption here that the
maximum positive value is also the maximum
negative value.
– That should be true for the sounds we deal with, but

isn’t necessarily true

• Try adding a constant to every sample.
– That makes it non-cyclic

• I.e. the compressions and rarefactions in the sound wave are
not equal

– But it’s fairly subtle what’s happening to the sound.

18

Processing only part of the sound

• What if we wanted to increase or decrease
the volume of only part of the sound?

• Q: How would we do it?

• A: We’d have to use a range() function
with our for loop
– Just like when we manipulated only part of a

picture by using range() in conjunction with
getPixels()

– More about this next time….

