Picture Encoding and
Manipulation

We perceive light different from
how it actually is e

 Color is continuous TR

— Visible light is wavelengths

between 370 and 730 nm
« That's 0.00000037 and 0.00000073
meters

« But we perceive light with color sensors

that peak around 425 nm (blue), 550 nm

(green), and 560 nm (red).

* Our brain figures out which color is which by
figuring out how much of each kind of sensor is
responding

L um | nNance Vvs. e e e e e e e
Color =

» We perceive borders of
things, motion, depth via
luminance

— Luminance is not the
amount of light, but our
perception of the amount of
light.

— We see blue as “darker”
than red, even if same

amount of light. Luminance perception is
« Much of our luminance color blind.
perception is based on Different parts of the
comparison to brain perceive color and
backgrounds, not raw luminance.
values.

Digitizing pictures into dots

« We digitize pictures into many tiny dots
« Enough dots and it looks continuous to the eye

— Our eye has limited resolution
— Our background/depth acuity is particularly low

« Each picture element is a pixel

Pixels in Python

 Pixels are picture elements
—Each pixel in python is an object that
“knows” its color
« E.g. given a pixel, a Python function can
get the color of it.
—It also “knows” where it is in the picture

 E.g. given a pixel and a picture, a Python
function can find out where the pixel is
located in the picture

A Picture is a matrix of pixels

* It’s not a continuous
line of elements, that 1 2 > s

is, a
1-D array

15 12 13 10

A picture has two
dimensions: Width
and Height

 We need a 2-
dimensional array: a
matrix

Just the upper left hand
corner of a matrix.

Referencing a matrix

 We talk about

positions in a matrix as

= 10 (x, y), or (horizontal,
vertical)

; » The origin (1, 1) isin
the upper left corner

‘ of the picture

* Element (2, 1) in the
matrix at left is the
value 12

* Element (1, 3)is 6

RGB

 In RGB, each color has me |

three component colors:
— Amount of red

— Amount of green

— Amount of blue

* In a CRT each appears
as a dot and is blended
by our eye.

* In most computer-based
models of RGB, a single
byte (8 bits) is used for
each

— So a complete RGB color
is 24 bits, 8 bits of each

EBlack

How much can we encode in 8
bits?

+ Let’s walk through it.

— If we have one bit, we can represent two patterns:
Oand .

— If we have two bits, we can represent four patterns:
00, 01,10, and 11.

— If we have three bits, we can represent eight patterns:
000, 001, 010, 011, 100, 101, 110, 111
» The rule: In n bits, we can have 2" patterns
— In 8 bits, we can have 28 patterns, or 256

— If we make one pattern 0, then the highest value we
can represent is 28-1, or 255

Encoding RGB

+ Each component color
(red, green, and blue) is
encoded as a single byte] 2 3

» Colors go from (0, 0, 0) to
(255, 255, 255)

— If all three components are
the same, the color is in
grayscale

+ (50, 50, 50) at (2, 2) 2 50,50,50 0,100.0

— (0, 0, 0) (at position (1, 2) in
example) is black

— (255, 255, 255) is white

1 100,10,5 510,100

Is that enough?

» We’re representing color in 24 (3 * 8) bits.

— That’s 16,777,216 (224) possible colors

— Our eye can discern millions of colors, so it is pretty

close

— But the real limitation is the physical devices: We
don’t get 16 million colors out of a monitor

« Some graphics systems support 32 bits per pixel
— May be more pixels for color
— More useful is to use the additional 8 bits to represent

not color but 256 levels of translucence

Media jargon: 4th byte per pixel
is the “Alpha channel”

Size of images

320 x 240 640 x 480 1024 x 768
image image monitor
24 bit color | 1,843,200 bits |7,372,800 bits | 18,874,368 bits
230,400 bytes | 921,600 bytes | 2,359,296
bytes
32 bit color |2,457,600 bits |9,830,400 bits | 25,165,824 bits
307,200 bytes | 1,228,800 3,145,728
bytes bytes

Reminder: Manipulating
Pictures

>>> file = pickAFile()

>>> print file

C:\Documents and Settings\Kenrick\My
Documents\Class\CSA109\JES\content\MediaSources\ducks\d
ucks 010.jpg

>>> picture = makePicture(file)

>>> show(picture)

>>> print picture

Picture, filename C:\Documents and Settings\Kenrick\My
Documents\Class\CSA109\JES\content\MediaSources\ducks\d
ucks 010.jpg

height 240 width 320

What is a “picture”?

A picture object in JES is an encoding that
represents an image
— Knows its height and width
* i.e. it knows how many pixels it contains in both directions
— Knows its filename

» A picture isn’t a file, it's what you get when you makePicture()

a file...but it does “remember” the file it came from.
— Knows its window if it's opened (via show and
repainted with repaint)
» which we will need to do later....

Manipulating pixels

getPixel(picture, x, y) gets a single pixel.

getPixels(picture) gets all of them into an array.

>>> pixel = getPixel(picture, 1, 1)

. i Square brackets:
>>> print pixel standard way to
Pixel, color=color r=168 g=131 b=105 refer to an element
in an array
—which we’ll
generally not use

>>> pixels = getPixels(picture)

>>> print pixels[0]
Pixel, color=color r=168 g=131 b=105

Close, but not quite

» The preceding slide is not quite true —
there is a small bug in the way getPixels
works

getPixel(pict,2,1) ; i
getPixel(pict,1,1) getPixel(pict,2,2)

getPixel(pict,1,2) —> r 1 —| getPixels returns back only
I I the pixels in this area, skipping
\ the top row and left column

getPixels[0]

getPixels[1]

What can we do with a
pixel?

« getRed, getGreen, and getBlue are
functions that take a pixel as input
and return a value between 0 and 255

» setRed, setGreen, and setBlue are
functions that take a pixel as input
and a value between 0 and 255

We can also get, set, and
make Colors

» getColor takes a pixel as a parameter and
returns a Color object from the pixel

- setColor takes a pixel as a parameter and a
Color, then sets the pixel to that color

- makeColor takes red, green, and blue values (in
that order) each between 0 and 255, and returns
a Color object

» pickAColor lets you use a color chooser and
returns the chosen color

» We also have functions that can makeLighter
and makeDarker an input color

How “close” are two colors”?

+ Sometimes you need to find the distance between two
colors, e.g., when deciding if something is a “close
enough” match

* How do we measure distance?
— Pretend it's Cartesian coordinate system
— Distance between two points:

V(e —x2)2 + (y1 — y2)?

— Distance between two colors:

V(redy — reds)? + (greeny — greens)? + (bluey — blues)?

Demonstrating: Manipulating
Colors

>>> print color

>>> print getRed(pixel) color r=81 g=63 b=51

168 >>> print newcolor

>>> setRed(pixel, 255) color r=255 g=51 b=51

>>> print getRed(pixel) >>> print distance(color, newcolor)
255 174.41330224498358

>>> color = getColor(pixel) >>> print color
>>> print color color r=168 g=131 b=105
color =255 g=131 b=105 >>> print makeDarker(color)

>>> setColor(pixel, color) color r=117 g=91 b=73

>>> newColor = makeColor(0, 100, 0) ~>~ print color
>>> print newColor color r=117 g=91 b=73
color =0 g=100 b=0 >>> newcolor = pickAColor()

>>> print newcolor

>>> setColor(pixel, newColor)
color r=255 g=51 b=51

>>> print getColor(pixel)
color r=0 g=100 b=0

We can change pixels direcily...

ke My Picturesikelton. jpg)

>>> pict=makePicture(file)

>>> show(pict)

>>> red = makeColor(255,0,0)

>>> setColor(getPixel(pict, 10, 100),red)
>>> setColor(getPixel(pict, 11, 100),red)
>>> setColor(getPixel(pict, 12, 100),red)
>>> setColor(getPixel(pict, 13, 100),red)
>>> repaint(pict)

But that’s really tedious...
Manipulating pictures more cleverly
is coming up next

How do you find out what RGB
values you have? And where?

» Use a paint

program — or use (especially useful when
the MediaTools! testing and debugging...)
 Drag

mediatools.image
onto squeakVM to
run

11

Better Pixel Manipulation - Use
a loop!

def decreaseRed(picture):
for p in getPixels(picture):
value = getRed(p)
setRed(p, value * 0.5)

Used like this:

>>> file = r"c:\mediasources\katie.jpg’
>>> picture = makePicture(file)

>>> show(picture)

>>> decreaseRed(picture)

>>> repaint(picture)

How loops are written

» for is the name of the command

* An index variable is used to hold each of the
different values of a sequence

e The word in

A function that generates a sequence

— The index variable will be the name for one value
in the sequence, each time through the loop

« A colon (*")
* And a block

12

What happens when a loop is
executed

* The index variable is set to an item in the
sequence

» The block is executed
— The variable is often used inside the block

» Then execution loops to the for statement,

where the index variable gets set to the next
item in the sequence

» Repeat until every value in the sequence
was used.

getPixels returns a sequence of
pixels

« Each pixel knows its color and place in the
original picture
» Change the pixel, you change the picture

» So the loop below assigns the index
variable p to each pixel in the picture
picture, one at a time.

def decreaseRed(picture):
for p in getPixels(picture):
originalRed = getRed(p)
setRed(p, originalRed * 0.5)

13

Do we need the variable
originalRed?

» Not really: Remember that we can swap names
for data and function calls that are equivalent.
def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
setRed(p, originalRed * 0.5)

def decreaseRed(picture):
for p in getPixels(picture):
setRed(p, getRed(p) * 0.5)

Let’s walk that through slowly...

def decreaseRed(picture): «—— He_re - take a picture
for p in getPixels(picture): object in as a parameter
originalRed = getRed(p) to the function and call it
setRed(p, originalRed * 0.5) picture

picture

14

Now, get the pixels

def decreaseRed(picture): We get all the pixels from
for p in getPixels(picture): «—_ the picture, then make p
originalRed = getRed(p) be the name of each one
P *
setRed(p, originalRed * 0.5) one at a time
picture
Pixel, Pixel, Pixel, | aesSoies0 l
color color color
r=135 r=133 r=134
g=116 g=114 g=114
b=48 b=46 b=45
P

Get the red value from pixel

def decreaseRed(picture):
for p in getPixels(picture): We get the red value of
originalRed = getRed(p) «— nive| p and name it
setRed(p, originalRed * 0.5) P - P
originalRed

picture
sl Pl sl <. Betpixels O
color color color
r=135 r=133 r=134
g=116 g=114 g=114
b=48 b=46 b=45
l originalRed = 135

15

Now change the pixel

def decreaseRed(picture): Set the red value of pixel
for p in getPixels(picture): to 0.5 (50%) of
originalRed = getRed(p) gri in'aII(Red °)
setRed(p, originalRed * 0.5) g
picture
Pixel, Pixel, Pixel) R l
color color color
r=67 r=133 r=134
g=116 g=114 g=114
b=48 b=46 b=45
l originalRed = 135

Then move on to the next pixel

def decreaseRed(picture): ,
for p in getPixels(picture): «— Move on tO' the next pixel
originalRed = getRed(p) and name itp
setRed(p, originalRed * 0.5)

picture
Pixel, Pixel, sl . BetPixels O
color color color
r=67 r=133 r=134
g=116 g=114 g=114
b=48 b=46 b=45
l originalRed = 135

16

Get its red value

def decreaseRed(picture):
for p in getPixels(picture):
originalRed = getRed(p)
setRed(p, originalRed * 0.5)

Pixel, Pixel, Pixel,
color color color
r=67 r=133 r=134
g=116 g=114 g=114
b=48 b=46 b=45
l originalRed = 133

Set originalRed to the
red value at the new p,
then change the red at
that new pixel.

picture

getPixels()

def decreaseRed(picture):
for p in getPixels(picture):
originalRed = getRed(p)

setRed(p, originalRed * 0.5) +~—

Pixel, Pixel, Pixel,
color color color
r=67 r=66 r=134
g=116 g=114 g=114
b=48 b=46 b=45
l originalRed = 133

And change this red value

Change the red value at pixel
p to 50% of value

picture

getPixels()

17

And eventually, we do all pixels

* We go from this... to this!

“Tracing/Stepping/Walking through”
the program

« What we just did is called “stepping” or “walking
through” the program

— You consider each step of the program, in the order
that the computer would execute it

— You consider what exactly would happen
— You write down what values each variable (name)
has at each point.
* It's one of the most important debugging skills
you can have.

— And everyone has to do a /ot of debugging, especially
at first.

18

Did that really work?
How can we be sure?
» Sure, the picture looks different, but did we

actually decrease the amount of red? By
as much as we thought?

* Let’'s check it!

>>> file = pickAFile()

>>> print file

C:\Documents and Settings\Kenrick Mock\My
Documents\mediasources\barbara.jpg

>>> pict = makePicture(file) o

>>> pixel = getPixel(pict, 2, 2) Didn’t use 1,1
>>> print pixel because of
Pixel, color=color r=168 g=131 b=105 getPixels bug
>>> decreaseRed(pict)

>>> newPixel = getPixel(pict, 2, 2)

>>> print newPixel

Pixel, color=color r=84 g=131 b=105

>>> print 168 * 0.5

84.0

19

Want to save the new picture?

writePictureTo(picture, "filename.jpg”)
Writes the picture out as a JPEG
Be sure to end your filename as “.jpg”!

If you don’t specify a full path,
will be saved in the same directory as
JES.

Checking it in the MediaTools

20

