
1

Picture Encoding and

Manipulation

We perceive light different from
how it actually is

• Color is continuous
– Visible light is wavelengths

between 370 and 730 nm
• That’s 0.00000037 and 0.00000073

meters

• But we perceive light with color sensors
that peak around 425 nm (blue), 550 nm
(green), and 560 nm (red).

• Our brain figures out which color is which by
figuring out how much of each kind of sensor is
responding

2

Luminance vs.
Color

• We perceive borders of

things, motion, depth via

luminance

– Luminance is not the

amount of light, but our

perception of the amount of

light.

– We see blue as “darker”

than red, even if same

amount of light.

• Much of our luminance

perception is based on

comparison to
backgrounds, not raw

values.

Luminance perception is

color blind.

Different parts of the

brain perceive color and

luminance.

Digitizing pictures into dots

• We digitize pictures into many tiny dots

• Enough dots and it looks continuous to the eye

– Our eye has limited resolution

– Our background/depth acuity is particularly low

• Each picture element is a pixel

i.e. “picture element”

3

Pixels in Python

• Pixels are picture elements

– Each pixel in python is an object that
“knows” its color

• E.g. given a pixel, a Python function can
get the color of it.

– It also “knows” where it is in the picture
• E.g. given a pixel and a picture, a Python

function can find out where the pixel is
located in the picture

A Picture is a matrix of pixels

• It’s not a continuous
line of elements, that
is, a

1-D array

• A picture has two
dimensions: Width
and Height

• We need a 2-
dimensional array: a
matrix

Just the upper left hand

corner of a matrix.

4

Referencing a matrix

• We talk about
positions in a matrix as
(x, y), or (horizontal,
vertical)

• The origin (1, 1) is in
the upper left corner
of the picture

• Element (2, 1) in the
matrix at left is the
value 12

• Element (1, 3) is 6

RGB

• In RGB, each color has
three component colors:
– Amount of red

– Amount of green

– Amount of blue

• In a CRT each appears
as a dot and is blended
by our eye.

• In most computer-based
models of RGB, a single
byte (8 bits) is used for
each
– So a complete RGB color

is 24 bits, 8 bits of each

5

How much can we encode in 8
bits?

• Let’s walk through it.
– If we have one bit, we can represent two patterns:

0 and 1.

– If we have two bits, we can represent four patterns:
00, 01, 10, and 11.

– If we have three bits, we can represent eight patterns:
000, 001, 010, 011, 100, 101, 110, 111

• The rule: In n bits, we can have 2n patterns
– In 8 bits, we can have 28 patterns, or 256

– If we make one pattern 0, then the highest value we
can represent is 28-1, or 255

Encoding RGB

• Each component color
(red, green, and blue) is
encoded as a single byte

• Colors go from (0, 0, 0) to
(255, 255, 255)
– If all three components are

the same, the color is in
grayscale

• (50, 50, 50) at (2, 2)

– (0, 0, 0) (at position (1, 2) in
example) is black

– (255, 255, 255) is white

6

Is that enough?

• We’re representing color in 24 (3 * 8) bits.

– That’s 16,777,216 (224) possible colors

– Our eye can discern millions of colors, so it is pretty

close

– But the real limitation is the physical devices: We

don’t get 16 million colors out of a monitor

• Some graphics systems support 32 bits per pixel

– May be more pixels for color

– More useful is to use the additional 8 bits to represent

not color but 256 levels of translucence

Media jargon: 4th byte per pixel

is the “Alpha channel”

Size of images

25,165,824 bits

3,145,728

bytes

9,830,400 bits

1,228,800

bytes

2,457,600 bits

307,200 bytes

32 bit color

18,874,368 bits

2,359,296

bytes

7,372,800 bits

921,600 bytes

1,843,200 bits

230,400 bytes

24 bit color

1024 x 768

monitor

640 x 480

image

320 x 240

image

7

Reminder: Manipulating
Pictures

>>> file = pickAFile()

>>> print file

C:\Documents and Settings\Kenrick\My

Documents\Class\CSA109\JES\content\MediaSources\ducks\d

ucks 010.jpg

>>> picture = makePicture(file)

>>> show(picture)

>>> print picture

Picture, filename C:\Documents and Settings\Kenrick\My

Documents\Class\CSA109\JES\content\MediaSources\ducks\d

ucks 010.jpg

height 240 width 320

What is a “picture”?

• A picture object in JES is an encoding that
represents an image

– Knows its height and width

• i.e. it knows how many pixels it contains in both directions

– Knows its filename

• A picture isn’t a file, it’s what you get when you makePicture()

a file...but it does “remember” the file it came from.

– Knows its window if it’s opened (via show and

repainted with repaint)

• which we will need to do later….

8

Manipulating pixels

>>> pixel = getPixel(picture, 1, 1)

>>> print pixel
Pixel, color=color r=168 g=131 b=105

>>> pixels = getPixels(picture)

>>> print pixels[0]
Pixel, color=color r=168 g=131 b=105

getPixel(picture, x, y) gets a single pixel.

getPixels(picture) gets all of them into an array.

Square brackets:

standard way to

refer to an element

in an array

—which we’ll

generally not use

Close, but not quite

• The preceding slide is not quite true –
there is a small bug in the way getPixels
works

getPixel(pict,1,1)
getPixel(pict,2,1)

getPixel(pict,1,2) getPixels returns back only

the pixels in this area, skipping

the top row and left column

getPixels[1]

getPixels[0]

getPixel(pict,2,2)

9

What can we do with a
pixel?

• getRed, getGreen, and getBlue are

functions that take a pixel as input

and return a value between 0 and 255

• setRed, setGreen, and setBlue are

functions that take a pixel as input

and a value between 0 and 255

We can also get, set, and

make Colors
• getColor takes a pixel as a parameter and

returns a Color object from the pixel

• setColor takes a pixel as a parameter and a
Color, then sets the pixel to that color

• makeColor takes red, green, and blue values (in
that order) each between 0 and 255, and returns
a Color object

• pickAColor lets you use a color chooser and
returns the chosen color

• We also have functions that can makeLighter
and makeDarker an input color

10

How “close” are two colors?
• Sometimes you need to find the distance between two

colors, e.g., when deciding if something is a “close
enough” match

• How do we measure distance?
– Pretend it’s Cartesian coordinate system

– Distance between two points:

– Distance between two colors:

Demonstrating: Manipulating
Colors

>>> print getRed(pixel)

168

>>> setRed(pixel, 255)

>>> print getRed(pixel)

255

>>> color = getColor(pixel)

>>> print color

color r=255 g=131 b=105

>>> setColor(pixel, color)

>>> newColor = makeColor(0, 100, 0)

>>> print newColor

color r=0 g=100 b=0

>>> setColor(pixel, newColor)

>>> print getColor(pixel)

color r=0 g=100 b=0

>>> print color

color r=81 g=63 b=51

>>> print newcolor

color r=255 g=51 b=51

>>> print distance(color, newcolor)

174.41330224498358

>>> print color

color r=168 g=131 b=105

>>> print makeDarker(color)

color r=117 g=91 b=73

>>> print color

color r=117 g=91 b=73

>>> newcolor = pickAColor()

>>> print newcolor

color r=255 g=51 b=51

11

We can change pixels directly…

>>> pict=makePicture(file)

>>> show(pict)

>>> red = makeColor(255,0,0)

>>> setColor(getPixel(pict, 10, 100),red)

>>> setColor(getPixel(pict, 11, 100),red)

>>> setColor(getPixel(pict, 12, 100),red)

>>> setColor(getPixel(pict, 13, 100),red)

>>> repaint(pict)

But that’s really tedious…

Manipulating pictures more cleverly

is coming up next

How do you find out what RGB
values you have? And where?

(especially useful when

testing and debugging…)

• Use a paint

program – or use

the MediaTools!

• Drag

mediatools.image

onto squeakVM to

run

12

Better Pixel Manipulation - Use
a loop!

def decreaseRed(picture):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value * 0.5)

Used like this:Used like this:Used like this:Used like this:

>>> file = r"c:\mediasources\katie.jpg"

>>> picture = makePicture(file)

>>> show(picture)

>>> decreaseRed(picture)

>>> repaint(picture)

How loops are written

• for is the name of the command

• An index variable is used to hold each of the
different values of a sequence

• The word in

• A function that generates a sequence
– The index variable will be the name for one value

in the sequence, each time through the loop

• A colon (“:”)

• And a block

13

What happens when a loop is
executed

• The index variable is set to an item in the

sequence

• The block is executed

– The variable is often used inside the block

• Then execution loops to the for statement,

where the index variable gets set to the next

item in the sequence

• Repeat until every value in the sequence

was used.

getPixels returns a sequence of
pixels

• Each pixel knows its color and place in the

original picture

• Change the pixel, you change the picture

• So the loop below assigns the index

variable p to each pixel in the picture

picture, one at a time.

def decreaseRed(picture):

for p in getPixels(picture):

originalRed = getRed(p)

setRed(p, originalRed * 0.5)

14

Do we need the variable
originalRed?

• Not really: Remember that we can swap names
for data and function calls that are equivalent.

def decreaseRed(picture):

for p in getPixels(picture):

setRed(p, getRed(p) * 0.5)

def decreaseRed(picture):

for p in getPixels(picture):

originalRed = getRed(p)

setRed(p, originalRed * 0.5)

Let’s walk that through slowly…

Here we take a picture

object in as a parameter
to the function and call it

picture

def decreaseRed(picture):

for p in getPixels(picture):

originalRed = getRed(p)

setRed(p, originalRed * 0.5)

picture

15

Now, get the pixels

We get all the pixels from

the picture, then make p
be the name of each one

one at a time

Pixel,

color

r=135

g=116

b=48

Pixel,

color

r=133

g=114

b=46

Pixel,

color

r=134

g=114

b=45

…

p

getPixels()

def decreaseRed(picture):

for p in getPixels(picture):

originalRed = getRed(p)

setRed(p, originalRed * 0.5)

picture

def decreaseRed(picture):

for p in getPixels(picture):

originalRed = getRed(p)

setRed(p, originalRed * 0.5)

Get the red value from pixel

We get the red value of

pixel p and name it
originalRed

…

originalRed = 135

picture

…

p

getPixels()
Pixel,

color

r=135

g=116

b=48

Pixel,

color

r=133

g=114

b=46

Pixel,

color

r=134

g=114

b=45

16

def decreaseRed(picture):

for p in getPixels(picture):

originalRed = getRed(p)

setRed(p, originalRed * 0.5)

Now change the pixel

Set the red value of pixel

p to 0.5 (50%) of
originalRed

picture

…

p

getPixels()
Pixel,

color

r=67

g=116

b=48

Pixel,

color

r=133

g=114

b=46

Pixel,

color

r=134

g=114

b=45

originalRed = 135

Then move on to the next pixel

Move on to the next pixel

and name it p

picture

…

p

def decreaseRed(picture):

for p in getPixels(picture):

originalRed = getRed(p)

setRed(p, originalRed * 0.5)

getPixels()
Pixel,

color

r=67

g=116

b=48

Pixel,

color

r=133

g=114

b=46

Pixel,

color

r=134

g=114

b=45

originalRed = 135

17

def decreaseRed(picture):

for p in getPixels(picture):

originalRed = getRed(p)

setRed(p, originalRed * 0.5)

Get its red value

p

Set originalRed to the

red value at the new p,
then change the red at

that new pixel.

p

picture

…

p originalRed = 133

getPixels()
Pixel,

color

r=67

g=116

b=48

Pixel,

color

r=133

g=114

b=46

Pixel,

color

r=134

g=114

b=45

And change this red value

Change the red value at pixel

p to 50% of value

def decreaseRed(picture):

for p in getPixels(picture):

originalRed = getRed(p)

setRed(p, originalRed * 0.5)

pp

picture

…

p originalRed = 133

getPixels()
Pixel,

color

r=67

g=116

b=48

Pixel,

color

r=66

g=114

b=46

Pixel,

color

r=134

g=114

b=45

18

And eventually, we do all pixels

• We go from this… to this!

“Tracing/Stepping/Walking through”
the program

• What we just did is called “stepping” or “walking
through” the program
– You consider each step of the program, in the order

that the computer would execute it

– You consider what exactly would happen

– You write down what values each variable (name)
has at each point.

• It’s one of the most important debugging skills
you can have.
– And everyone has to do a lot of debugging, especially

at first.

19

Did that really work?
How can we be sure?

• Sure, the picture looks different, but did we

actually decrease the amount of red? By

as much as we thought?

• Let’s check it!

>>> file = pickAFile()

>>> print file
C:\Documents and Settings\Kenrick Mock\My

Documents\mediasources\barbara.jpg

>>> pict = makePicture(file)

>>> pixel = getPixel(pict, 2, 2)

>>> print pixel
Pixel, color=color r=168 g=131 b=105

>>> decreaseRed(pict)

>>> newPixel = getPixel(pict, 2, 2)

>>> print newPixel

Pixel, color=color r=84 g=131 b=105
>>> print 168 * 0.5

84.0

Didn’t use 1,1
because of

getPixels bug

20

Want to save the new picture?

• writePictureTo(picture, ”filename.jpg”)

• Writes the picture out as a JPEG

• Be sure to end your filename as “.jpg”!

• If you don’t specify a full path,

will be saved in the same directory as

JES.

Checking it in the MediaTools

