
1

Introduction to JES and

Programming

Installation

• Installing JES and starting it up

– Windows users:
• Just copy the folder

• Double-click JES application

– Mac users:
• Just copy the folder

• Double-click the JES application

• There is help available from the Help menu

2

We will program in JES

• JES: Jython Environment for Students

• A simple editor (for entering in our

programs or recipes): We’ll call that the
program area

• A command area for entering in

commands for Python to execute.

JES - Jython Environment for
Students

3

Tour of JES

• Save and Save As
– Save your files as “filename.py”

• Cut/Copy/Paste with shortcut keys
• Turning in assignments

– Don’t use the Turnin feature of JES

– Just send your code files to me in email as
attachments

• Help
– Explain is contextualized help: Highlight a JES

(media) function

– Lots of help on mediatools and the like

Python understands commands

• We can name data with =

• We can print values, expressions,

anything with print

4

Using JES

>>> print 34 + 56

90

>>> print 34.1/46.5

0.7333333333333334

>>> print 22 * 33

726

>>> print 14 - 15

-1

>>> print "Hello"

Hello

>>> print "Hello" + "Mark"

HelloMark

Some Operators

• + addition

• - subtraction

• * multiplication

• / division

• % modulus (gives remainder after

division)

• ** exponentiation

5

What will JES output?

>>> print 16 / 4 * 3

>>> print 10 % 3

>>> print 10 % 2

>>> print 57 % 25

>>> print 2 ** 3

What will JES output?

>>> print 4 / 3

>>> print 7 / 4

>>> print 2 + 3 * 4 + 2

>>> print 2 + 4 / 2 + 2

>>> print 2 / 4 * 2

Evaluated as INTEGERS

Anything after the decimal point is thrown

away

Turn numbers into FLOATING POINT

values to avoid; e.g. 4.0 / 3

* and / take precedence over + and -

Left to right evaluation at same

level of precedence

6

Precedence Rules

• Parentheses have the highest precedence and can be used to force
an expression to evaluate in the order you want
– (1+1)**(5-2) is 8.

– Use parentheses to make an expression easier to read, as in (2 + (3 *
4) – 2), even though it doesn't change the result.

• Exponentiation has the next highest precedence
– 2**1+1 is ?

– 3*1**3 is ?

• Multiplication, Division, and Modulus have the same and next
highest precedence

• Addition and Subtraction have the same and next highest
precedence

• Operators with the same precedence are evaluated from left to right
– 3*100/60, the multiplication happens first, yielding 300/60, which in turn

yields 5. If the operations had been evaluated from right to left, the
result would have been 3*1, which is 3

Command Area Editing

• Up/down arrows walk through command

history

• You can edit the line at the bottom

– and then hit Return/Enter

– that makes that last line execute

7

Demonstrating JES for files

>>> print pickAFile()

C:\Documents and Settings\Kenrick\My

Documents\Class\CSA109\guzdial_python\content\MediaSources\arthurs-seat.jpg

>>> print makePicture(pickAFile())

Picture, filename C:\Documents and Settings\Kenrick\My

Documents\Class\CSA109\guzdial_python\content\MediaSources\arch.jpg height 480

width 360

>>> myfilename = pickAFile()

>>> print myfilename

C:\Documents and Settings\Kenrick\My

Documents\Class\CSA109\guzdial_python\content\MediaSources\arch.jpg

>>> mypicture = makePicture(myfilename)

>>> print mypicture

Picture, filename C:\Documents and Settings\Kenrick\My

Documents\Class\CSA109\guzdial_python\content\MediaSources\arch.jpg height 480

width 360

>>> show(mypicture)

Demonstrating JES for sound

>>> print pickAFile()

C:\Documents and Settings\Kenrick\My

Documents\Class\CSA109\guzdial_python\

content\MediaSources\aah.wav

>>> print makeSound(pickAFile())

Sound of length 43009

>>> print play(makeSound(pickAFile()))

None

8

Writing a recipe:
Making our own functions

• To make a function, use
the command def

• Then, the name of the
function, and the names
of the input values
between parentheses
(“(input1)”)

• End the line with a colon
(“:”)

• The body of the recipe is
indented (Hint: Use two
spaces)
– That’s called a block

Making functions the easy way

• Get something working by typing

commands

• Enter the def command.

• Copy-paste the right commands up into

the recipe

9

A recipe for playing picked
sound files

def pickAndPlay():

myfile = pickAFile()

mysound = makeSound(myfile)

play(mysound)

Note: myfile and mysound, inside pickAndPlay(), are

completely different from the same names in the command

area.

These are called local variables; variables used in different

blocks are considered different, even if using the same name, if

they are in different blocks.

Blocking is indicated for you in JES

• Statements that are
indented the same,
are in the same block.

• Statements that are in
the same block as
where the line where
the cursor is are
enclosed in a blue
box.

10

A function for playing picked
picture files

def pickAndShow():

myfile = pickAFile()

mypict = makePicture(myfile)

show(mypict)

The Most Common JES Bug:
Forgetting to Load

• Your function does NOT exist for JES until

you load it

– Before you load it, the program is just a bunch
of characters.

– Loading encodes it as an executable function

• Save and Save As

– You must Save before Loading

– You must Load before you can use your
function

11

What if you forget your variable
names? showVars()

MOST IMPORTANT THING TO
DO TO PASS THIS CLASS!

• DO THE EXAMPLES!
• Try them out for yourself. Try to replicate them.

Understand them
– EVERY CLASS, TYPE IN AT LEAST TWO OF THE

EXAMPLES FROM CLASS

• To understand a program means that you know
why each line is there.

• What not to do: try changing the program
“randomly” until it hopefully works

• You will encounter all the simple-but-confusing
errors early—BEFORE you are rushing to get
homework done!!

12

All about naming

• We name our data
– Data: The “numbers” or values we manipulate

– The names for data are "variables"

• We name our recipes/functions

• Quality of names determined much as in
Philosophy or Math
– Enough words to describe what you need to

describe

– Understandable
• E.g., don’t use interestRate to store account balance

Naming our Encodings
• We even name our encodings (something is a

number, something else is text...)

– Sometimes referred to as types

• Some programming languages are strongly
typed

– A name has to be declared to have a type, before any

data is associated with it

– Python is not strongly typed

>>> x = 3

>>> print x

3

>>> x = "hello"

>>> print x

hello

>>>

13

Programs contain a variety of
names

• You will name your functions
– Just like functions you knew in math, like sine

and gcd (Greatest Common Divisor)

• You will name your data (variables)

• You will name the data that your functions
work on
– parameters, like the 90 in sine(90)

• Key: Names inside a function only have
meaning while the function is being
executed by the computer.

Names for things that are not
in memory

• A common name that you’ll deal with is a file
name

– The program that deals with those is called the

operating system, like Windows, MacOS, Linux

• A file is a collection of bytes, with a name, that
resides on some external medium, like a hard
disk.

– Think of it as a whole bunch of space where you can

put your bytes (your information)

• Files are typed, typically with three letter
extensions

– .jpg files are JPEG (pictures), .wav are WAV (sounds)

14

Names can be (nearly)
anything

• Must start with a letter (but can contain numerals or _)

• Can’t contain spaces or other punctuation
– myPicture is okay but my Picture is not

• Be careful not to use command names as your own
names
– print = 1 won’t work

– (Avoid names that appear in the editor pane of JES highlighted
in blue or purple)

• Case matters
– MyPicture is not the same as myPicture or mypicture

• Sensible names are sensible
– E.g. myPicture is a good name for a picture, but not for a sound

file.

– x could be a good name for an x-coordinate in a picture, but
probably not for anything else - it is too vague

JES Functions

• Many functions are pre-defined in JES for sound
and picture manipulations
– pickAFile()

– makePicture()

– makeSound()

– show()

– play()

• Some of these functions accept input values
called parameters or arguments

theFile = pickAFile()

pic = makePicture(theFile)

15

Picture Functions

• makePicture(filename)

creates and returns a picture object, from

the JPEG file at the filename

• show(pictureObject)

displays a picture object in a window

• We’ll learn functions for manipulating

pictures later, like getColor, setColor,

and repaint

Sound Functions

• makeSound(filename)

creates and returns a sound object, from the

WAV file at the filename

• play(sound)

plays the sound

– but doesn’t wait until it’s done

– blockingPlay(sound) waits for the

sound to finish

• We’ll learn more later like getSample and

setSample

16

A value come from: the value itself, a

variable name that holds that value, a

function that returns the value

>>> file=pickAFile()

>>> print file

C:\Documents and Settings\Kenrick\My
Documents\Class\CSA109\guzdial_python\content\MediaSources\ar
thurs-seat.jpg

>>> show(makePicture(file))

>>> show(makePicture(r"C:\Documents and Settings\Kenrick\My
Documents\Class\CSA109\guzdial_python\content\MediaSources\ar
thurs-seat.jpg"))

>>> show(makePicture(pickAFile()))

Put r in front of Windows filenames:

r“C:\mediasources\pic.jpg”

Grabbing media from the Web

• Right-click (Windows)
or Control-Click (Mac)

• Save Target As…

• Can only do JPEG
images (.jpg, .jpeg)

Most images on the Internet

are copyright. Without

permission you can

download and use them for

your use only.

17

Writing a recipe:
Making our own functions

• To make a function, use
the command def

• Then, the name of the
function, and the names
of the input values
between parentheses
(“(input1)”)

• End the line with a colon
(“:”)

• The body of the recipe is
indented (Hint: Use two
spaces)
– That’s called a block

A recipe for playing picked
sound files

defdefdefdef pickAndPlay():

myfile = pickAFilepickAFilepickAFilepickAFile()

mysound = makeSoundmakeSoundmakeSoundmakeSound(myfile)

playplayplayplay(mysound)

Bug alert!!!

myfile and mysound, inside pickAndPlay(), are completely

different from the same names in the command area.

18

Bug Example

>>> >>> myfile = pickAFile()

>>> print myfile

C:\Documents and Settings\Kenrick\My

Documents\Class\CSA109\guzdial_python\content\MediaSources\arch.jpg

def bugExample():

mysound = makeSound(myfile) � There is no myfile defined!

play(mysound)

>>> bugExample()

A local or global name could not be found. You need to define the function or

variable before you try to use it in any way.

Please check line 2 of C:\Documents and Settings\Kenrick\My

Documents\Class\CSA109\spring2006\samplepython\test.py

def bugExample():

print myfile

A recipe for showing picked
picture files

defdefdefdef pickAndShow():

myfile = pickAFilepickAFilepickAFilepickAFile()

mypicture = makePicturemakePicturemakePicturemakePicture(myfile)

showshowshowshow(mypicture)

19

“Hard-coding” for a specific
sound or picture

def playSound():

myfile = r”C:\bark.wav"

mysound = makeSound(myfile)

play(mysound)

def showPicture():

myfile = r”C:\boat.jpg"

mypict = makePicture(myfile)

show(mypict)

You can always replace

data (a string of

characters, a

number…. whatever)

with a name (variable)

that holds that data

…. or vice versa.

Q: This works, but can you see

the disadvantage?

Function parameters allow
flexibility

def playNamed(myfile):

mysound = makeSound(myfile)

play(mysound)

def showNamed(myfile):

mypict = makePicture(myfile)

show(mypict)

Q: What functions do you

need?

Q: What (if any) should

be their parameter(s)?

A: In general, have

enough functions to do

what you want, easily,

understandably, and

flexibly

(try for more generic, less

specific functions)

20

Multiple Parameters

• Separate by a comma

def showAndPlay(mypicturefile, myaudiofile):

mypict = makePicture(mypicturefile)

show(mypict)

mysound = makeSound(myaudiofile)

play(mysound)

>>> pictfile = pickAFile()

>>> soundfile = pickAFile()

>>> showAndPlay(pictfile, soundfile)

What can go wrong when things
look right?

• Did you use the exact same names (case,
spelling)?

• All the lines in the block must be indented,
and indented the same amount.

• Variables in the command area don’t exist in
your functions, and variables in your functions
don’t exist in the command area.

• The computer can’t read your mind.

– It will only do exactly what you tell it to do.

21

Programming is a craft

• You don’t learn to write, paint, or ride a bike by
attending biking lectures and watching others
bike.
– You learn to bike by biking!

• Programming is much the same.
– You have to try it, make many mistakes, learn how to

control the computer, learn how to think in Python.

• The programming and labs that you have to
write in this class aren’t enough!
– Do programming on your own!

– Play around with the class and book examples!

