
1

Introduction to Computing

CS A109

Course Objectives

• Goal is to teach computation in terms relevant to non-CS
majors

• Students will be able to read, understand, modify, and
assemble from pieces programs that achieve useful
communication tasks: Image manipulation, sound synthesis
and editing, text (e.g., HTML) creation and manipulation, and
digital video effects.
– We will give you examples to use as a basis when you write your own

programs

• Students will learn what computer science is about, especially
data representations, algorithms, encodings, forms of
programming.

• Students will learn useful computing skills, including graphing
and database concepts

2

def negative(picture):

for px in getPixels(picture):

red=getRed(px)

green=getGreen(px)

blue=getBlue(px)

negColor=makeColor(255-red,255-green,255-blue)

setColor(px,negColor)

def clearRed(picture):

for pixel in getPixels(picture):

setRed(pixel,0)

def greyscale(picture):

for p in getPixels(picture):

redness=getRed(p)

greenness=getGreen(p)

blueness=getBlue(p)

luminance=(redness+blueness+greenness)/3

setColor(p,

makeColor(luminance,luminance,luminance))

def chromakey2(source,bg):

for p in getPixels(source):

if (getRed(p)+getGreen(p) < getBlue(p)):

setColor(p,getColor(getPixel(bg,getX(p),getY(p))))

return source

3

Introduction and Brief History of

Programming

• Hardware

– Physical components that make up a computer

• Computer program or software

– A self-contained set of instructions used to operate a

computer to produce a specific result

How a computer works

• The part that does the adding and
comparing is the Central Processing
Unit (CPU).

• The CPU talks to the memory

– Think of it as a sequence of millions
of mailboxes, each one byte in size,
each of which has a numeric address

• The hard disk provides 10 times or
more storage than in memory (20
billion bytes versus 128 million
bytes), but is millions of times slower

• The display is the monitor or LCD (or
whatever)

4

Knowing About: Computer

Hardware
• Computer hardware components

– Memory unit

• Stores information in a logically consistent format
– Each memory location has an address and data that can be

stored there, imagine a long line of mailboxes starting at
address 0 and going up to addresses in the billions

• Two types of memory: RAM and ROM
– Random Access Memory, Read Only Memory (misnamed)

– Central Processing Unit

• Directs and monitors the overall operation of the
computer

• Performs addition, subtraction, other logical operations

• Evolution of hardware

– 1950s: all hardware units were built using relays and

vacuum tubes

– 1960s: introduction of transistors

– mid-1960s: introduction of integrated circuits (ICs)

– Present computers: use of microprocessors

Knowing About: Computer

Hardware (Continued)

5

What computers understand

• It’s not really multimedia at all.
– It’s unimedia (Nicholas Negroponte)

– Everything is 0’s and 1’s

• Computers are exceedingly stupid
– The only data they understand is 0’s and 1’s

– They can only do the most simple things with those 0’s and 1’s

• Move this value here

• Add, multiply, subtract, divide these values

• Compare these values, and if one is less than the other, go follow this step
rather than that one.

Key Concept: Encodings

• But we can interpret these
numbers any way we want.

– We can encode information in
those numbers

• Even the notion that the computer
understands numbers is an
interpretation

– We encode the voltages on wires
as 0’s and 1’s,
eight of these defining a byte

– Which we can, in turn, interpret
as a decimal number

6

Layer the encodings

as deep as you want
• One encoding, ASCII, defines an “A” as 65

– If there’s a byte with a 65 in it, and we decide that it’s a

string, POOF! It’s an “A”!

• We can string together lots of these numbers together

to make usable text

– “77, 97, 114, 107” is “Mark”

– “60, 97, 32, 104, 114, 101, 102, 61” is

“<a href=“ (HTML)

What do we mean by layered

encodings?

• A number is just a number is just a number

• If you have to treat it as a letter, there’s a piece of software
that does it
– For example, that associates 65 with the graphical representation for

“A”

• If you have to treat it as part of an HTML document, there’s a
piece of software that does it
– That understands that “<A HREF=“ is the beginning of a link

• That part that knows HTML communicates with the part that
knows that 65 is an “A”

7

Multimedia is unimedia

• But that same byte with a 65 in it might be interpreted

as…

– A very small piece of sound (e.g., 1/44100-th of a second)

– The amount of redness in a single dot in a larger picture

– The amount of redness in a single dot in a larger picture

which is a single frame in a full-length motion picture

Software (recipes) defines and

manipulates encodings
• Computer programs manage all these layers

– How do you decide what a number should mean, and how
you should organize your numbers to represent all the data
you want?

– That’s data structures

• If that sounds like a lot of data, it is

– To represent all the dots on your screen probably takes
more than 3,145,728 bytes

– Each second of sound on a CD takes 44,100 bytes!!

8

Let’s Hear It for Moore’s Law!

• Gordon Moore, one of the founders of Intel, made the
claim that (essentially) computer power doubles for
the same dollar every 18 months.

• This has held true for over 30 years

– But soon we may be reaching limitations imposed by
physics

• Go ahead! Make your computer do the same thing to
every one of 3 million dots on your screen. It doesn’t
care! And it won’t take much time either!

First-Generation and Second-

Generation (Low-Level)

Languages
• Low-level languages

– First-generation and second-generation languages

– Machine-dependent languages

– The underlying representation the machine actually understands

• First-generation languages

– Also referred to as machine languages

– Consist of a sequence of instructions represented as binary numbers

– E.g.: Code to ADD might be 1001 . To add 1+0 and then 1+1 our

program might look like this:

• 1001 0001 0000

• 1001 0001 0001

9

• Second-generation languages

– Also referred to as assembly languages

– Abbreviated words are used to indicate operations

– Allow the use of decimal numbers and labels to indicate the location of

the data

• Assemblers

– Programs that translate assembly language programs into machine

language programs

– Our add program now looks like:

• ADD 1,0

• ADD 1,1

First-Generation and Second-

Generation (Low-Level)

Languages (Continued)

1001

0001

0000

1001

0001

0001

Assembler

• High-level languages

– Third-generation and fourth-generation languages

– Programs can be translated to run on a variety of computer types

• Third-generation languages

– Procedure-oriented languages

– Object-oriented languages

• Our Add program might now look like:

sum = value1 + value2

Third-Generation and Fourth-

Generation (High-Level)

Languages

1001

0001

0000

1001

0001

0001

Compiler

10

The Evolution

of Programming

Languages

Third-Generation and Fourth-

Generation (High-Level)

Languages (Continued)

Computer Science and Media?

• What is computer science about?

• What computers really understand

• Media Computation: Why digitize media?

– How can it possibly work?

• It’s about communications and process

11

What computation is good for

• Computer science is the study of recipes

• Computer scientists study…
– How the recipes are written (algorithms, software

engineering)

– The units used in the recipes (data structures, databases)

– What can recipes be written for (systems, intelligent
systems, theory)

– How well the recipes work (human-computer interfaces)

Specialized Recipes

• Some people specialize in crepes or barbeque

• Computer scientists can also specialize on special
kinds of recipes
– Recipes that create pictures, sounds, movies, animations

(graphics, computer music)

• Still others look at emergent properties of computer
“recipes”
– What happens when lots of recipes talk to one another

(networking, non-linear systems)

– Computer programs to study or simulate natural systems

12

Key concept:

The COMPUTER does the recipe!

• Make it as hard, tedious, complex as you want!

• Crank through a million genomes? No problem!

• Find one person in a 30,000 person campus? Sure.

• Process a million dots on the screen or a bazillion sound
samples?
– That’s media computation

• Later on we’ll see some problems that are computationally too
expensive to solve even for the fastest computer today

Why digitize media?

• Digitizing media is encoding media into numbers

– Real media is analogue (continuous)

• Images

• Sound

– To digitize it, we break it into parts where we can’t

perceive the parts.

• By converting them, we can more easily manipulate

them, store them, transmit them without error, etc.

13

How can it work to

digitize media?

• Why does it work that we can break media into pieces
and we don’t perceive the breaks?

• We can only do it because human perception is
limited.

– We don’t see the dots in the pictures, or the gaps in the
sounds.

• We can make this happen because we know about
physics (science of the physical world) and
psychophysics (psychology of how we perceive the
physical world)

Why should you study “recipes”?

• To understand better the recipe-way of thinking
– It’s influencing everything, from computational science to

bioinformatics

– Eventually, it’s going to become part of everyone’s notion of a liberal
education

– That’s the process argument

– BTW, to work with and manage computer scientists

• AND…to communicate!
– Writers, marketers, producers communicate through computation

• We’ll take these in opposite order

14

Computation for Communication

• All media are going digital

• Digital media are manipulated with software

• You are limited in your communication by
what your software allows

– What if you want to say something that Microsoft
or Adobe or Apple doesn’t let you say?

Programming is a

communications skill
• If you want to say something that your tools don’t allow,

program it yourself

• If you want to understand what your tools can or cannot do, you
need to understand what the programs are doing

• If you care about preparing media for the Web, for marketing, for
print, for broadcast… then it’s worth your while to understand
how the media are and can be manipulated.

• Knowledge is Power,
Knowing how media work is powerful and freeing

15

We’re not going to replace

PhotoShop
• Nor ProAudio Tools, ImageMagick and the GIMP,

and Java and Visual Basic

• But if you know what these things are doing, you
have something that can help you learn new tools

• You are also learning general programming skills that
can be applied to creating business applications,
scientific applications, etc.

– Our domain for this class just happens to be (primarily)
media

Knowing about programming is

knowing about process
• Alan Perlis

– One of the founders of computer science

– Argued in 1961 that Computer Science should be part of a
liberal education: Everyone should learn to program.

• Perhaps computing is more critical to a liberal education than
Calculus

• Calculus is about rates, and that’s important to many.

• Computer science is about process, and that’s important to
everyone.

16

A Recipe is a Statement of

Process
• A recipe defines how something is done

– In a programming language that defines how the recipe is

written

• When you learn the recipe that implements a

Photoshop filter, you learn how Photoshop does what

it does.

• And that is powerful.

Finally: Programming is about

Communicating Process

• A program is the most concise

statement possible to communicate a

process
– That’s why it’s important to scientists and others who want

to specify how to do something understandably in the most

precise words as possible

17

Python

• The programming language we will be using is called Python
– http://www.python.org

– Python was invented by researchers across the Internet

– Considered by many to be the best language to teach programming to
beginners, but still powerful enough for real applications

– It’s used by companies like Google, Industrial Light & Magic, Nextel,
and others

• The kind of Python we’re using is called Jython
– It’s Java-based Python

• More on Java later

– http://www.jython.org

• We’ll be using a specific tool to make Python programming
easier, called JES.
– Invented by the authors of the textbook

