Introduction to Computing

CS A109

Course Objectives

Goal is to teach computation in terms relevant to non-CS
majors

Students will be able to read, understand, modify, and
assemble from pieces programs that achieve useful
communication tasks: Image manipulation, sound synthesis
and editing, text (e.g., HTML) creation and manipulation, and
digital video effects.

— We will give you examples to use as a basis when you write your own

programs

Students will learn what computer science is about, especially
data representations, algorithms, encodings, forms of
programming.
Students will learn useful computing skills, including graphing
and database concepts

def clearRed(picture):
for pixel in getPixels(picture):
setRed(pixel,0)

def greyscale(picture):
for p in getPixels(picture):
redness=getRed(p)
greenness=getGreen(p)
blueness=getBlue(p)
luminance=(redness+blueness+greenness)/3
setColor(p,
makeColor(luminance,luminance,luminance))

def negative(picture):
for px in getPixels(picture):
red=getRed(px)
green=getGreen(px)
blue=getBlue(px)
negColor=makeColor(255-red,255-green,255-blue)
setColor(px,negColor)

def chromakey2(source,bg):
for p in getPixels(source):
if (getRed(p)+getGreen(p) < getBlue(p)):

setColor(p,getColor(getPixel(bg,getX(p),getY(p))))
return source

Introduction and Brief History of

Programming

* Hardware
— Physical components that make up a computer
e Computer program or software

— A self-contained set of instructions used to operate a
computer to produce a specific result

How a computer works

e The part that does the adding and

comparing is the Central Processing
Unit (CPU,).

e The CPU talks to the memory Hard Disk

— Think of it as a sequence of millions

Display

I I

I I

of mailboxes, each one byte in size, | Central |

each of which has a numeric address “a | Processing | |
e The hard disk provides 10 times or Unit
more storage than in memory (20
billion bytes versus 128 million -

I

|

|
bytes), but is millions of times slower Keyboard :
e The display is the monitor or LCD (or i
I

I

i

I

I

i

i

I

whatever)

Knowing About: Computer
Hardware

* Computer hardware components

— Memory unit

* Stores information in a logically consistent format

— Each memory location has an address and data that can be
stored there, imagine a long line of mailboxes starting at
address 0 and going up to addresses in the billions

* Two types of memory: RAM and ROM
— Random Access Memory, Read Only Memory (misnamed)
— Central Processing Unit
* Directs and monitors the overall operation of the
computer
* Performs addition, subtraction, other logical operations

Knowing About: Computer
Hardware (Continued)

¢ Evolution of hardware

1950s: all hardware units were built using relays and
vacuum tubes

1960s: introduction of transistors
mid-1960s: introduction of integrated circuits (ICs)
Present computers: use of microprocessors

What computers understand

* It’s not really multimedia at all.
— It’s unimedia (Nicholas Negroponte)
— Everything is 0’s and 1’s
* Computers are exceedingly stupid
— The only data they understand is 0’s and 1’s

— They can only do the most simple things with those 0’s and 1°s
¢ Move this value here
¢ Add, multiply, subtract, divide these values

* Compare these values, and if one is less than the other, go follow this step
rather than that one.

Key Concept: Encodings

* But we can interpret these

numbers any way we want. 0_
— We can encode information in .
those numbers WIres 1
* Even the notion that the computer —_—»
understands numbers is an — » 0
interpretation — | interpreted as
— We encode the voltages on wires EEm—
as0’sand I’s, —_—p 0| mm wm ’ 74
eight of these defining a byte —»
— Which we can, in turn, interpret —_—p 0
as a decimal number e i
0

Layer the encodings

as deep as you want

* One encoding, ASCII, defines an “A” as 65

— If there’s a byte with a 65 in it, and we decide that it’s a
string, POOF! It’s an “A”!
* We can string together lots of these numbers together
to make usable text
- 71,97, 114, 107" is “Mark”

- 60,97, 32, 104, 114, 101, 102, 61 is
“<a href=" (HTML)

What do we mean by layered
encodings?

* A number is just a number is just a number
* If you have to treat it as a letter, there’s a piece of software
that does it
— For example, that associates 65 with the graphical representation for
‘6A7?
* If you have to treat it as part of an HTML document, there’s a
piece of software that does it
— That understands that “<A HREF=" is the beginning of a link

* That part that knows HTML communicates with the part that
knows that 65 is an “A”

Multimedia is unimedia

* But that same byte with a 65 in it might be interpreted
as...
— A very small piece of sound (e.g., 1/44100-th of a second)
— The amount of redness in a single dot in a larger picture

— The amount of redness in a single dot in a larger picture
which is a single frame in a full-length motion picture

Software (recipes) defines and
manipulates encodings

e Computer programs manage all these layers

— How do you decide what a number should mean, and how
you should organize your numbers to represent all the data
you want?

— That’s data structures

e If that sounds like a lot of data, it is

— To represent all the dots on your screen probably takes
more than 3,145,728 bytes

— Each second of sound on a CD takes 44,100 bytes!!

Let’s Hear It for Moore’s Law!

Gordon Moore, one of the founders of Intel, made the
claim that (essentially) computer power doubles for
the same dollar every 18 months.
This has held true for over 30 years

— But soon we may be reaching limitations imposed by

physics

Go ahead! Make your computer do the same thing to
every one of 3 million dots on your screen. It doesn’t
care! And it won’t take much time either!

First-Generation and Second-
Generation (Low-Level)
Languages

Low-level languages
— First-generation and second-generation languages
— Machine-dependent languages

— The underlying representation the machine actually understands

First-generation languages
— Also referred to as machine languages
— Consist of a sequence of instructions represented as binary numbers

— E.g.: Code to ADD might be 1001 . To add 1+0 and then 1+1 our
program might look like this:
e 1001 0001 0000
e 1001 0001 0001

First-Generation and Second-
Generation (Low-Level)
Languages (Continued)

* Second-generation languages
— Also referred to as assembly languages
— Abbreviated words are used to indicate operations
— Allow the use of decimal numbers and labels to indicate the location of
the data
* Assemblers

— Programs that translate assembly language programs into machine
language programs

— Our add program now looks like: 1001
« ADD 1,0 0001
b 1 T > 0000

Assembler 0001
0001

Third-Generation and Fourth-
Generation (High-Level)

Languages
* High-level languages

— Third-generation and fourth-generation languages

— Programs can be translated to run on a variety of computer types

* Third-generation languages
— Procedure-oriented languages

— Object-oriented languages

* Our Add program might now look like:

~ 1001
sum = valuel + value2 |:> 0001

Compiler 0000
1001
0001
0001

Third-Generation and Fourth-
Generation (High-Level)
Languages (Continued)

The Evolution

of Programming
Languages

High-level
languages <

Low-level

languages <

-

Visual-oriented
languages

4GL
(Fourth-generation
language)

Object-oriented
languages

Procedure-oriented
languages

Assembly
languages

Machine
languages

'\

> 4th Generation

> 3rd Generation

J

} 2nd Generation
} 1st Generation

Computer Science and Media?

What is computer science about?

What computers really understand

Media Computation: Why digitize media?
— How can it possibly work?

It’s about communications and process

10

What computation is good for

* Computer science is the study of recipes

e Computer scientists study...
— How the recipes are written (algorithms, software
engineering)
— The units used in the recipes (data structures, databases)
— What can recipes be written for (systems, intelligent
systems, theory)
— How well the recipes work (human-computer interfaces)

Specialized Recipes

* Some people specialize in crepes or barbeque

* Computer scientists can also specialize on special
kinds of recipes
— Recipes that create pictures, sounds, movies, animations
(graphics, computer music)
 Still others look at emergent properties of computer
“recipes”
— What happens when lots of recipes talk to one another
(networking, non-linear systems)
— Computer programs to study or simulate natural systems

11

Key concept:
The COMPUTER does the recipe!

Make it as hard, tedious, complex as you want!
Crank through a million genomes? No problem!
Find one person in a 30,000 person campus? Sure.

¢ Process a million dots on the screen or a bazillion sound
samples?
— That’s media computation

Later on we’ll see some problems that are computationally too
expensive to solve even for the fastest computer today

Why digitize media?

* Digitizing media is encoding media into numbers

— Real media is analogue (continuous)
* Images
* Sound

— To digitize it, we break it into parts where we can’t
perceive the parts.

* By converting them, we can more easily manipulate
them, store them, transmit them without error, etc.

12

How can it work to
digitize media?

* Why does it work that we can break media into pieces
and we don’t perceive the breaks?

* We can only do it because human perception is
limited.

— We don’t see the dots in the pictures, or the gaps in the
sounds.

* We can make this happen because we know about
physics (science of the physical world) and
psychophysics (psychology of how we perceive the
physical world)

Why should you study “recipes”?

* To understand better the recipe-way of thinking

— It’s influencing everything, from computational science to
bioinformatics

— Eventually, it’s going to become part of everyone’s notion of a liberal
education

— That’s the process argument
— BTW, to work with and manage computer scientists
* AND...to communicate!
— Writers, marketers, producers communicate through computation

* We'll take these in opposite order

13

Computation for Communication

e All media are going digital
e Digital media are manipulated with software

* You are limited in your communication by
what your software allows

— What if you want to say something that Microsoft
or Adobe or Apple doesn’t let you say?

Programming is a
communications skill

* If you want to say something that your tools don’t allow,
program it yourself

* If you want to understand what your tools can or cannot do, you
need to understand what the programs are doing

* If you care about preparing media for the Web, for marketing, for
print, for broadcast... then it’s worth your while to understand
how the media are and can be manipulated.

* Knowledge is Power,
Knowing how media work is powerful and freeing

14

We’re not going to replace
PhotoShop

* Nor ProAudio Tools, ImageMagick and the GIMP,
and Java and Visual Basic

* But if you know what these things are doing, you
have something that can help you learn new tools

* You are also learning general programming skills that
can be applied to creating business applications,
scientific applications, etc.

— Our domain for this class just happens to be (primarily)
media

Knowing about programming is
knowing about process
e Alan Perlis

— One of the founders of computer science

— Argued in 1961 that Computer Science should be part of a
liberal education: Everyone should learn to program.

* Perhaps computing is more critical to a liberal education than
Calculus

* Calculus is about rates, and that’s important to many.

» Computer science is about process, and that’s important to
everyone.

15

A Recipe is a Statement of
Process

* A recipe defines how something is done

— In a programming language that defines how the recipe is
written

* When you learn the recipe that implements a
Photoshop filter, you learn how Photoshop does what
it does.

* And that is powerful.

Finally: Programming is about
Communicating Process

e A program is the most concise
statement possible to communicate a
process

— That’s why it’s important to scientists and others who want
to specify how to do something understandably in the most
precise words as possible

16

Python

The programming language we will be using is called Python
— http://www.python.org
— Python was invented by researchers across the Internet

— Considered by many to be the best language to teach programming to
beginners, but still powerful enough for real applications

— It’s used by companies like Google, Industrial Light & Magic, Nextel,
and others

The kind of Python we’re using is called Jython

— It’s Java-based Python

* More on Java later

— http://www.jython.org
We’ll be using a specific tool to make Python programming
easier, called JES.

— Invented by the authors of the textbook

17

