Syntax, Data Types, Arithmetic
In these notes we’ll look at the basic structure and methods involved in creating C# programs.

General Format of a Simple C# Program

In general, your programs will have the following structure:

using System;

using System.Text;

using...

namespace NameOfProject

{

 class NameOfProgram

 {

 public or private variable declarations

 public or private method declarations

 public void method(arguments)

 {

 Code here for the method...
 }

 }

}

The “using” statement at the top tells the C# compiler what other namespaces you want to use. Rather than rewrite commonly used code from scratch, you can use pre-built code that is organized in these namespaces. The “using” statement specifies which namespace you wish to use. Next we have class which defines our object. We’ll say a lot more about classes later. For now, all C# programs are organized into classes. When you create a Windows application Visual Studio adds a class for you called Form1. Inside the class, you will declare variables that belong to that class. We’ll focus on two categories of variables, public and private, where public is information we’ll make available to the rest of the program, and private is only available within the class. Then we’ll define methods that make up the class. Methods perform actions and consists of a group of statements. Each statement corresponds to a single action. The curly braces define blocks of code that make up methods, namespaces, classes, etc.
Outputting Messages
To output a message a common technique is to have your program put the message into a label or textbox.

Another approach is to use a MessageBox. This is useful for testing, debugging, or important messages. It’s not recommended for common messages because it puts a dialog box up on the screen that has to be dismissed before the user can continue using the program.

Here is an example using MessageBox. The entity in quotation marks is called a literal string because it’s directly embedded in the program:

MessageBox.Show("Hello World!");
What if we wanted to print out a double quotation mark? The computer would get confused because it would think the quotation mark you want to print really ends the message to be printed:

MessageBox.Show("Britney Spears said, "I get to go to lots of overseas places, like Canada."");
What will happen when this program is compiled? The compiler will complain about missing some expected character. Text enclosed in double quotes is referred to as strings. If we want to print a double quote itself (or some other special characters) then we need to use an escape character. In C#, the escape character is \. The program that works is:

MessageBox.Show("Britney Spears said, \"I get to go to lots of overseas places, like Canada.\"");
Some other escape characters:

\n
- newline, Moves the cursor to the next lin

\\
- print the escape character itself

An alternate technique to output text is to use Console.WriteLine. This will output text to the “Output” window. You might have to make sure it is visible in Visual Studio under V)iew and O)utput. The following outputs the text to the console:

Console.WriteLine("Britney Spears said, \"I get to go to lots of overseas places, like Canada.\"");
The console can be particularly handy for debugging purposes or writing quick programs to output some data.

Identifiers

An identifier is made up of letters, numbers, and underscores, but must begin with a letter or an underscore. It is used to assign a meaningful name to something.
BEWARE: C# is case sensitive. This means that Value, VALUE, value, and vaLue are four separate identifiers. In fact, we can construct 32 distinct identifiers from these five letters by varying the capitalization. Which of these identifiers are valid?

_FoosBall
F00sBall
%FoosBall
9FoosBall%
12391
 * _FF99

Note: When picking identifiers try to select meaningful names!

Words and Symbols with Special Meanings

Certain words have predefined meanings within the C# language; these are called reserved words or keywords. For example, char, int, void, main are reserved words. We aren’t allowed to use reserved words as names for your identifiers. You’ll see what words are reserved as we continue learning C#.
Data Types

A data type is a set of values and a set of operations on these values. C# distinguishes between a number of fundamental data types. Of these, the ones we will use most commonly are:

int

long

float (also called a single)

double

string

char

byte

bool
The table below summarizes the different types:

[image: image1.png]Reserved Word

sbyte
byte
short.
ushort
int
uint
long
ulong
float
double
decimal

Aliased Type

System.SByte
System.Byte
System.Int16
System.UInt16
System.Int32
System.UInt32
System.Int64
System.UInt64
System.Single
System.Double
System.Decimal

Storage

8 bits

8 bits

16 bits
16 bits
32 bits
32 bits
64 bits
64 bits
32 bits
64 bits
96 bits

Min Value

-128
o

-32,768

o

-2,147,483,648

0
-9,223,372,036,854,775,808
o

1.5_107%

5.0_1032¢

1.0_10%

Max Value

127
255

32,767

65,535

2,147,483,647
4,204,967,295
9,223,372,036,854,775,807
18,446,744,073,709,551,615
3.4_10%

1.7_10%%

7.9_10%

An int is a positive or negative number with no value past the decimal point. Note the limitation on the range of values it can hold. If we allocate more storage space (e.g., more bytes) then we can represent larger numbers.

The long data type uses 8 bytes of storage instead of 4 like the int, so it can represent much larger values.

Similarly, C# has two commonly used floating point values: float and double. These data types are used to represent real numbers. The float uses 4 bytes and the double uses 8 bytes, so the double can store larger values than the float (also called a single.)
If double has a larger data range than integer, and can store floating point numbers, you might wonder why we don’t just always use a double. We could do this, but it would be wasteful – the double format takes up more space than an integer. Also it is slower to perform arithmetic operations on a number stored as double than it is on a number stored as integer. The integer data type is better to use if that is all your application needs.

bool stands for Boolean and is used to represent True or False. These are the only two values that are allowed. Booleans are useful in programming due to their ability to select a course of action based upon some outcome that is either true or false, so we will use Booleans extensively in decision-making.

The string data type consist of textual data and is used to hold a sequence of characters. We denoted strings by enclosed the characters in double-quotes. We can’t numerically operate on strings if they hold numbers – we have to convert them to numbers. This would be like typing numbers into a word processor. The numbers are stored in a format that doesn’t allow them to be operated on mathematically.
Variables

Putting together identifiers with data types gives us variables. We specify the data type first followed by an identifier for the name of the variable. This defines some space in the computer’s memory to store data of the specified data type.

The format to define a variable is:

DataType variablename;

We can assign variables an initial value:

DataType variableName = initialValue;

We can also declare multiple variables separated by commas:

DataType var1= value1, var2 = value2;

Here is an example:
 private void button1_Click(object sender, EventArgs e)

 {

 string name = "Manny Cotty";

 string food = "cheese and pasta";

 int quantity = 2;

 double cost = 9.95;

 double total = 0;

 total = cost * quantity;

 MessageBox.Show(name + " ate " + quantity + " " +

 food + " at a cost of " + cost + " each or " +

 total + " total.");

 }

This outputs that Manny Cotty ate 2 cheese and pasta at a cost of 9.95 each or 19.9 total.
Numbers

C# allows us to perform standard arithmetic operations:

Arithmetic Operator

C# Symbol

Addition

+

Subtraction

-

Multiplication

*

Division

/ (truncation if both operands are integers!)

Modulus

%
Here are some examples of arithmetic operations and outputting the result to the console:

Console.WriteLine(3 + 2) ;

Console.WriteLine (3 - 2) ;

Console.WriteLine (5 * 2 * 10) ;

Console.WriteLine (14 % 5) ;

Console.WriteLine (9 % 4) ;

Console.WriteLine (10 / 2) ;

Console.WriteLine (11 / 2) ;

Console.WriteLine (1 / 2) ;

Console.WriteLine(1.0 / 2) ;
The results are:

5

1

100

4

1

5

5

0

0.5
Take care when using division! If an intermediate result is less than zero, the whole thing becomes zero, even though mathematically it should not be zero:

Console.WriteLine((1 / 2) * 4);

The way around this is to make sure one of the numbers being divided is not an integer, and division is done assuming floating point values.

Console.WriteLine((1.0 / 2) * 4);

In addition to the standard arithmetic operators, C# provides an increment operator and a decrement operator. The increment operator ++ adds one to its operand; the decrement operator -- subtracts one from its operand.

Shorthand Assignment Operators

A useful shorthand in C# for assignment statements is to combine the assignment along with a mathematical operator. In general, we can use a math symbol in combination with an = to apply the operation to the same variable on the left, and store the result back into that variable.

The following are equivalent:

x = x+ y

((

x += y

x = x* y

((

x *= y

x = x - y

((

x -= y

x = x/ y

((

x /= y

x = x% y

((

x %= y

Generally these are used with constants; e.g.:

x += 5;

Precedence Rules

The precedence rules of arithmetic apply to arithmetic expressions in a program. That is, the order of execution of an expression that contains more than one operation is determined by the precedence rules of arithmetic. These rules state that:

1. parentheses have the highest precedence

2. multiplication, division, and modulus have the next highest precedence

3. addition and subtraction have the lowest precedence.

Because parentheses have the highest precedence, they can be used to change the order in which operations are executed. When operators have the same precedence, order is left to right.

Examples:

 int x;

Value stored in X

 x = 1 + 2 + 6 / 6;

4

 x = (1 + 2 + 3) / 6;

1

 x = 2 * 3 + 4 * 5;

26

 x = 2 / 4 * 4;

0

 x = 10 % 2 + 1;

1
In general it is a good idea to use parenthesis if there is any possibility of confusion.

There are a number of built-in math functions. Here are just a few:

Math.Sqrt(number)

returns the square root of number

Ex:

Console.WriteLine(Math.Sqrt(9));

// Displays 3

double d;

d = Math.Sqrt(25);

Console.WriteLine(d);

// Displays 5

Console.WriteLine(Math.Sqrt(-1));

// Displays NaN

Math.Round(number);

returns the number rounded up/down

Ex:
 Math.Round(2.7);

returns 3

Math.Abs(number);

returns the absolute value of number

Ex:
 Math.Abs(-4);

returns 4

Math.Pow(num1, num2);

returns num1 raised to the num2 power

Ex:

Math.Pow(2,3);

returns 8

There are many more, for sin, cos, tan, atan, exp, log, etc.

Class Example: Killer Whale Calculator

This problem explores the metabolic rate of mammals. In particular we'll look at the caloric requirements of killer whales. Transient killer whales eat marine mammals while resident killer whales primarily eat fish. A lot of attention has been given recently to the theory that "rogue" transient killer whales have resulted in the collapse of the Steller sea lion population in Alaska by switching their diet from whales to sea lions as a result of commercial whaling (Report casts killer whales as villains of seas). First, we need to cover some background on killer whales.

A. Energy requirements
Kleiber in 1975 calculated the Basal Metabolic Rate (BMR) for mammals as:

BMR = 70×M0.756 where M is the mass of the mammal in kilograms.

The resulting BMR is the number of kilocalories the mammal must consume per day to meet its metabolic requirements. A typical male killer whale might be 4500 kg and a typical female 2800 kg.

Since whales need to swim around and perform a variety of activities in order to survive, their Field Metabolic Rate (FMR) is a factor of up to 6 times higher than the BMR. For purposes of this problem, assume that the FMR is six times higher, i.e.:

FMR = 6×70×M0.756

This gives the total number of kilocalories we can expect a whale to consume in a single day to maintain its weight.

B. Caloric value of prey
When a killer whale eats prey, it gains some number of calories. On average we can expect the following caloric values are gained upon consuming the following prey species:

	Species
	Mass
	kilocalories / kg
	Total kilocals per prey

	Sea otter
	30 kg
	1800
	30×1800 = 54000

	Steller sea lion
	300 kg
	2600
	300×2600 = 780000

	Dall's porpoise
	150 kg
	3100
	150×3100 = 465000

C. Calculate yearly intake
If a killer whale eats only one species all year round, we can estimate the number of prey eaten using the values from sections A and B. The whale must eat enough prey to get enough calories to meet its Field Metabolic Rate.

For example, for sea otters, the number eaten per day is :

FMR / kcals-per-sea-otter.

For a 4500 kg male killer whale, the number of sea otters eaten per day is then: (6×70×45000.756) / 54000 = 4.5 sea otters per day.

In one year, this would be 365 × 4.5 = 1642 sea otters for one whale.

D. Programming Time
Write a program that takes:

· Number of killer whales in the population

· Mass of a single killer whale

· Mass of the prey to be consumed (use a sea lion)
· kilocalories / kg of the prey to be consumed

Formulation:

preyEaten = 365 * NumWhales *
 (6 * 70 * WhaleMass0.756) / (PreyMass * PreyKcal)

