Switch Statement

The switch statement is a more convenient way to write multiple if-then-else statements. Alternative statements are listed with a switch label in front of each. A switch label is either a case label or the word default. A case label is the word case followed by a constant expression. An integral expression called the switch expression is used to match one of the values on the case labels. The statement associated with the value that is matched is the statement that is executed. Execution then continues sequentially from the matched label until a break statement is encountered.

The format for switch is:

switch (expression) {

case const_expr1 :

statement1;

// Exec if expr1 true

statement2;

…

break;

case const_expr2:

statement101;
// Exec if expr2 true

statement102;

…

break;

. . .

default:

statement;

// Exec if all above false

…

// no break needed

}
Remember that what follows the keyword “case” must be a constant value, not a variable!

Here is an example:

int gradeCode;

// Some code here that somehow assigns a value to gradeCode
// e.g. read it in from some other place
switch (gradeCode)

{

 case 4 : Console.WriteLine("Great work!");

 break;

 case 3 : Console.WriteLine ("Good work!");

 break;

 case 2 : Console.WriteLine ("Satisfactory work!");

 break;

 case 1 :

 case 0 : Console.WriteLine ("Unsatisfactory work.");

 Console.WriteLine ("See your instructor.");

 break;

 default : Console.WriteLine ("Illegal grade.");

 break;

}

gradeCode is the switch expression; the numbers beside the statements make up the case labels. The value in grade is compared with the value in each case label. When a match is found, the corresponding statement is executed. If the value of the switch expression does not match a value in any case label, the default label is matched by default. Because execution continues after a match until break is encountered, both 1 and 0 send the same message to the screen.

What would happen if we tried to add a variable to our case?:

int gradeCode;
int gradeTarget;

// Some code here that somehow assigns a value to grade and gradeTarget
switch (gradeCode)

{

 case 4 : Console.WriteLine("Great work!");

 break;

 case 3 : Console.WriteLine ("Good work!");

 break;

 case gradeTarget : Console.WriteLine ("Satisfactory work!");

 break;

 case 1 :

 case 0 : Console.WriteLine ("Unsatisfactory work.");

 Console.WriteLine ("See your instructor.");

 break;

 default : Console.WriteLine ("Illegal grade.");

 break;

}

This will not compile because gradeTarget is not a constant.

As you can see, the switch statement is not very flexible since we are limited to constant expressions. This is likely to change in future versions of C#; however, it is a compact way to select among different choices if it is applicable. In many cases we are stuck with using nested if-statements instead.

Random Numbers

It is often useful to generate random numbers to produce simulations or games (or homework problems :) One way to generate these numbers in C# is to use the Random object.

The random object generates pseudo-random numbers. What is a pseudo-random number? It is a number that is not truly random, but appears random. That is, every number between 0 and 1 has an equal chance (or probability) of being chosen each time random() is called. (In reality, this is not the case, but it is close).

Here is a very simple pseudorandom number generator to compute the ith random #:

Ri = (Ri-1 * 7) mod 11

Initially, we set the “seed”, R0 = 1. Then our first “random” number is 7 mod 11 or 7.

Our second “random” number is then (7*7) mod 11 or 5.

Our third “random” number is then (5*7) mod 11 or 3.

Our fourth “random” number is then (3*7) mod 11 or 10.

..etc.

As you can see, the values we get seem random, but are really not. This is why they are called pseudorandom. We can get slightly more random results by making the initial seed some variable number, for example, derived from the time of day. The particular function shown above would not be a very good pseudorandom number generator because it would repeat numbers rather quickly.

Here is an example of using C#’s random number generator.

1. At the class level, create a variable of type Random:

Random rnd = new Random();

This creates a new Random object. We’ll talk more about objects later when we get to object-oriented programming. We need to create the random number only once or we won’t get a good pseudorandom number sequence. A good way to do this is to make it a class level variable associated with your form (this it will be created once when the form is displayed).

2. To generate a random integer x, where min ≤ x < max, use:

x = rnd.Next(min, max);
3. To generate a random double d, where 0 ≤ d < 1, use:

d = rnd.NextDouble();
Here is a short demonstration program:

 public partial class Form1 : Form

 {

 Random rnd = new Random();

 private void button1_Click(object sender, EventArgs e)

 {

 int intNum;

 double dblNum;

 intNum = rnd.Next(0, 4);

 Console.WriteLine(intNum);

 dblNum = rnd.NextDouble();

 Console.WriteLine(dblNum);

 }

 }

The program above might print out:

1

0.969432235215526
The second time the button is clicked it might print out:

3
0.032952289578017

Both the integer and double are randomly generated. While the method call allows us to specify the range for integers, what if instead we wanted a random double between 5 and 15? We can just invoke rnd with:

intNum = rnd.Next(5, 16)
This generates a number that is ≥ 5 and < 16 (i.e. 5-15 inclusive).

In-Class Example: The Monty Hall problem

You are a contestant on a game show and have won a shot at the grand prize. Before you are three doors. Behind one door is a new Mustang convertible and $1,000,000 in cash. Behind the other two doors are the booby prizes of macaroni & cheese plus a bottle of dishwasher detergent. The location of the prizes is randomly selected. You want the car and the cash. The game show host asks you to select a door, and you randomly pick one. However, before revealing the contents behind your door, the game show host reveals one of the other doors that contains the booby prize. At this point, the game show host asks if you would like to stick with your original choice or switch your choice to the remaining door. What choice should you make to optimize your chances of winning the grand prize, or does it matter?

Write a computer program to simulate one run of the Monty Hall problem. Make three buttons to represent the three doors. Pick a random number from 1-3 to represent the door that holds the grand prize. Let the user choose one of the doors. The program should then display on the button one of the doors that has the booby prize. Let the user click a button again, and this time display what is behind the door the user selected. Run the program several times – is it better to switch, or does it matter?

Pseudocode:

1. Set class level variable, FirstPick, to true. If true, this means the player is picking a door for the first time. If false, this means the player is picking the door after one door has been revealed so we should display what prize the player gets.

2. Create class level variable to generate random numbers

3. Create class level variable to store the door with the prize

4. In the form-load event (executed when the program first runs) set the prize to a random number from 1-3

5. Make three buttons on the form

6. In the button click event for button 1 (door 1)

a. If FirstPick=True then

i. See if door 2 is a booby prize. If so, display it. Otherwise see if door 3 is a booby prize. If so, display it.

ii. Set FirstPick to False

b. Else

i. If the variable with the prize is 1, then display “You win the car” else display “You win detergent”

ii. Reset FirstPick to True, reset button text, and pick a new door for the prize so we can play again

