Making Decisions
Next we will examine how to make if-then-else statements. First let’s look at the components that make up an if-then-else statement.
Boolean Expressions and Conditions

In C#, the data type bool is used to represent Boolean data, or something that is either true or false.

Relational Operators

Boolean expressions are built using the relational operators. Relational operators take two operands and test for a relationship between them. The following table shows the relational operators and the C# symbols that stand for them.

	C# Symbol
	Relationship

	==
	Equal to (note TWO equal signs not one!)

	!=
	Not equal to (since there is no (symbol on the keyboard)

	>
	Greater than

	<
	Less than

	>=
	Greater than or equal to

	<=
	Less than or equal to

For example, the Boolean expression

number1 < number2

evaluates to True if the value stored in number1 is less than the value stored in number2, and evaluated to False otherwise.

While == and != works to compare two strings (they are case sensitive), the other relational operators are not supported. Instead we should use the compareTo() method which alphabetically compares two strings. Note that digits and uppercase is considered smaller than lowercase letters.

s1.CompareTo(s2);

Returns
 -1 if s1 < s2 (alphabetically)
0 if s1 == s2

1 if s1 > s2

Note that the relational operators are binary; they take only two values. The following is not a valid way to see if n is between 2 and 5:

INVALID: 2 < n < 5
 The accepted way is to use Boolean operators (next).
Boolean Operators
Boolean expressions can be combined using logical operations. There are three Boolean operators: AND, OR, and NOT. Here is a table showing the meaning of these operators and the symbols that are used to represent them in C#.

	C# Keyword
	Meaning

	&&
	AND is a binary Boolean operator. If both operands are true, the result is true. Otherwise, the result is false. Given two binary values A and B:
 A=True A=False

B=True True False

B=False False False

	||
	OR is a binary Boolean operator. If at least one of the operands is true, the result is true. Otherwise, the result is false. Given two binary values A and B:
 A=True A=False

B=True True True

B=False True False

	!
	NOT is a unary Boolean operator that gives the opposite of its input. If the operand is true, the result is false; if the operand is false, the result is true. Given value A:
 Not_Value

A = True False

A = False True

If relational operators and Boolean operators are combined in the same expression the Boolean operator ! has the highest precedence, the relational operators have next higher precedence, and the Boolean operators && and || come last (in that order). Expressions in parentheses are always evaluated first.

Exercises: Are the following statements true or false?

int a = 2;

int b = 3;

3*a == 2*b

(a<b) || (b<a)

(2<a) && (a<5)

!((a<b) && (a<(b+a)))

((a==b) && (a*a<b*b)) || ((b<a) && (2*a<b))

Value of the following:

“Car”.CompareTo(”Train”)

“99”.CompareTo(”ninety-nine”);

“9W”.CompareTo(“9a”);

If-Then and If-Then-Else Statements

The If statement allows the programmer to change the logical order of a program; that is, make the order in which the statements are executed differ from the order in which they are listed in the program. The If-Then statement uses a Boolean expression to determine whether to execute a statement or to skip it. The format is as follows:

if (boolean_expression1)

{

statement1

‘ Expr1 true

}

else if (boolean_expression2)

{

statement2

‘ Expr1 false, Expr2 true

}

…

else

{

statement_all_above_false
‘ Expr1, Expr2 false

}

The else and else if portions are optional. If you like you can leave them off. You can also insert multiple statements into each section if you have more than one line of code you would like to execute for each block.

Here are some examples of if statements.

To find the larger of two numbers:

 double num1, num2, biggest;

 num1 = double.Parse(txtNum1.Text);

 num2 = double.Parse(txtNum2.Text);

 if (num1 > num2)

 {

 biggest = num1;

 }

 else

 {

 biggest = num2;

 }

 MessageBox.Show("The bigger number is " +

 biggest.ToString());

Checking an answer for how much a ten gallon hat holds:

 double answer;

 answer = double.Parse(txtAnswer.Text);

 if ((answer >= 0.5) && (answer <= 1))

 {

 txtSolution.Text = "Good, ";

 }

 else

 {

 txtSolution.Text = "No, ";

 }

 txtSolution.Text += "it holds about 3/4 of a gallon.";

Code that takes as input a number between 0-100 and outputs a letter grade, where 90-100 is A, 80-90 is B, 70-80 is C, 60-70 is D, and anything below 60 is an F.

 double numGrade;

 numGrade = double.Parse(textBoxGrade.Text);

 if (numGrade >= 90)

 {

Console.WriteLine("A");

 }

 else if (numGrade >= 80)

 {

 Console.WriteLine("B");

 }

 else if (numGrade >= 70)

 {

 Console.WriteLine("C");

 }

 else if (numGrade >= 60)

 {

 Console.WriteLine("D");

 }

 else

 {

 Console.WriteLine("F");

 }

Note that anything can go inside the body of the If statement – including other If statements! When we do this, it is called nested If statements. For example:

 if (numGrade >= 90)

 {

 if (numGrade >= 97)

 {

 Console.WriteLine("A+");

 }

 else if (numGrade >= 94)

 {

 Console.WriteLine("A");

 }

 else

 {

 Console.WriteLine("A-");

 }

 }

In-Class Exercise: Write a program that gives a short quiz about UAA:

1. Who is the Dean of the College of Arts & Sciences?

a. Kim Peterson
b. Jim Liszka

c. Theodore Kassier

2. The UAA Chancellor is:
a. Pat Gamble
b. Fran Ulmer
c. Tom Case
At the end of the quiz, display the score of the test-taker, where 1 point is awarded for each correct question.

In-Class Exercise: Write a program that takes a year and determines if it is a leap year. Every year divisible by four is a leap year, with the exception of years divisible by 100 and not divisible by 400. For example:

1600 is a leap year: Divisible by 4, Divisible by 100, and Divisible by 400

2000 is a leap year: Divisible by 4, Divisible by 100, and Divisible by 400

1984 is a leap year: Divisible by 4, Not divisible by 100, Not divisible by 400

1700 is not a leap year: Divisible by 4, Divisible by 100, but not divisible by 400

