Local vs. Class Variable Scope
Scope refers to the section of code where a variable is “alive”. There are two categories of scope for a variable in C# that are generally used: class scope and local scope. Both adhere to the same basic rule: a variable is accessible everywhere within the curly braces where it is declared, including code within nested curly braces.

Local Variables

A local variable only has scope within the method in which it is created. When a variable is declared within a method, space reserved in memory for that variable exists while the subroutine is running. When the subroutine exits the variable ceases to exist
 private void button1_Click(object sender, EventArgs e)

 {

 int num = 3; // Local variable, reset to 3 when run

 num = num + 5;

 MessageBox.Show(num.ToString()); // Shows 8 every time

 }

Your program is free to have other subroutines that use the variable “num” and each will refer to a different number. This is useful when multiple programmers are working on the same file. As long as each programmer is working in a different method then their variables won’t conflict with each other because variables are separate and distinct even if they have the same name.
Class Variables

Class level variables are visible to every method in the class. These variables are declared within the class but outside all methods within that class. This is useful for variables you would like to share with many methods on the form, or variables that you want to retain their value as long as the form is still active.
 public partial class Form1 : Form

 {

 private string name;

(Declare class variables here

Normally “public” or “private” in front
 private void button1_Click(object sender, EventArgs e)

 {

 name = "Milhouse";

 }

 private void button2_Click(object sender, EventArgs e)

 {

 Console.WriteLine(name);

 }

 }

This technique is also a way in which subroutines can send data to each other – one subroutine can set the class level variable while the other reads it. In this case, name is set in button1’s click event, and displayed in button2’s click event. If you click button 2 before button 1, then a blank string is output (the default value for name).
In normal usage, variable scoping is as simple as defined above. However, things get trickier when variables have the same name. For example, consider the following scenario:

 public partial class Form1 : Form

 {

 private string name = "Hello";

 private void button2_Click(object sender, EventArgs e)

 {

 string name = "There";

 Console.WriteLine(name);

 }
 }

In the example above we have two variables named name. One has class scope, the other has local scope. Which variable is referenced when there is this ambiguity?

The rule used in C# is that local variables take precedence over class variables. In the example above, the local variable value of “There” is output.

If we wanted to access the class or module level variable, use the keyword “this” in front of the variable name:

 public partial class Form1 : Form

 {

 private string strName = "Hello";

 private void button2_Click(object sender, EventArgs e)

 {

 string strName = "There";

 Console.WriteLine(this.strName);

 }

 }

It is common convention to always use the this prefix for class level variables. Once again, this example only demonstrates output of a variable, but we could also assign the class or local variable to a different value.

C# does not allow us to have multiple local variables with the same name within the same scope. The following is illegal;

 private void button2_Click(object sender, EventArgs e)

 {

 string strName = "There";

 Console.WriteLine(strName);

 string strName = "Hello"; // Illegal redefinition

 Console.WriteLine(strName);

 }
Class Example

Make a form with a textbox that allows the user to enter a number along with a button to submit the number. The user should be able to repeatedly type in a number and click the submit button. Make a second button that when clicked displays the average of all the numbers submitted so far.

