Arrays

Let’s say that we would like to make a trivia game where we ask the player questions.  We could start a program with some variables such as the following:

private string question1;


private string answer1;


private string question2;


private string answer2;


private string question3;


private string answer3;

etc.

This works fine, but what if you had hundreds of questions?  It would be too much work to explicitly declare each one.  It would be nice if we could programmatically access each separate variable.  
For example, if we wanted to output all the questions, it would be nice if we could do the following:


for (I=0; I<100; I++)

{



Console.WriteLine(questionI)


}
Of course, this will not work because questionI is considered a single variable; C# won’t insert the number value for I at the end of the variable.

However, the construct that allows us to do what we want is called an array.  We will first examine one-dimensional arrays, and later multi-dimensional arrays.
An array is a consecutive group of variables that all have the same name and the same type.  To refer to a particular subscript or index, we specify the name of the array variable and then the positive index into the array. The index is specified by parentheses.  The first index is 0.

Here is the format to create an array variable that holds size elements:


DataType[]  arrayName = new DataType[size];
This allocates in the computer size storage locations of type DataType.

For example, if we used:


int[]  arr = new int[5];
Then we create 5 variables that we can access via the subscript.  They start at index 0 and go to index 4.  There is no index 5!
	Array Index
	Contents

	arr[0]
	

	arr[1]
	

	arr[2]
	

	arr[3]
	

	arr[4]
	


Initially the contents of the array variables are set to 0 for integers.

We can refer to the array like we have defined five variables.  arr[0] refers to the first variable in the array.  If we try to access arr[5] in this case, then we will be trying to access memory beyond the bounds of the array, and this will cause an error to occur.

Here are some simple ways we can access the array just like it was a variable:


arr[3] = 54   


// Stores 54 into array element 3


arr[0] = arr[3]


// Copies 54 into array element 0


arr[4] = arr[2+1]

// Copies contents of a[3] to a[4]

i=4

arr[i]+=1;


// Increment value in arr(4)

arr[5] = 10;


// Error, beyond bounds of array


for (i = 0; i < 5; i++)


{



Console.WriteLine(arr[i]);

// Print each arr value out


}

The flexible thing here is we can programmatically access each variable, based on the index, instead of hard-coding the access by hand.  

To initialize an array, we could use a loop.  The following initializes all array elements to the value 1:
int[ ] arr = new int[5];

int i;

for (i=0; i<5; i++)

{


arr[i] = 1;

}

We can also specify initial values for arrays when we declare it.  To define an array and initialize it at the same time, we can use curly braces { } and leave the size out of the parenthesis:

int[ ] arr = {0,1,2,3,4,5};
This sets arr[0] to 0, arr[1] to 1, arr[2] to 2, arr[3] to 3, arr[4]to 4, and arr[5] to 5.

Since we are initializing the array with six elements, the compiler knows to make the size of the array six.

Let’s look at a few example programs that use arrays.  The first one inputs 10 numbers from the user and then calculates the average:

        private int[] aryNums = new int[10]; 

  // Class member var for array

        private int currentIndex = 0;

        // Index we'll save the next number in the array

        private void btnAddNum_Click(object sender, EventArgs e)

        {

            int num = int.Parse(txtNum.Text);            

            aryNums[currentIndex] = num;

            lblInfo.Text = "Number " + num.ToString() +

                           " added to the array at index " +

                           currentIndex.ToString();

            currentIndex++;

        }

        // Calculate the average

        private void btnAverage_Click(object sender, EventArgs e)

        {

            int sum = 0;

            int ave;

            for (int i = 0; i < 10; i++)

            {

                sum += aryNums[i];

            }

            ave = sum / 10;

            MessageBox.Show("The average is " + ave.ToString());

        }
In this example, we input values into the array using a button click event. The array is a class member variable so we can access it from btnAverage and btnAddNum.  We have another class member variable to track which index the next number should be placed into the array.  The btnAverage code loops over the array, computes the sum, and then the average.  Note that we could compute the average while also entering the numbers, if we wished, but this method does allow us to save all input numbers for future processing.
Passing Arrays To Methods
When arrays are passed as a parameter to a method, specify the name of the array without any brackets in the invocation.    In the definition for the method, declare the array with the brackets but leave the size off.  For example:   
        private void button1_Click(object sender, EventArgs e)

        {

            int[] arr = new int[5];

            arr[3] = 100;

            Console.WriteLine("Before calling method: " + arr[3]);

            ChangeArray(arr);  // LEAVE [] OFF WHEN SENDING ARRAY IN

            Console.WriteLine("After calling method: " + arr[3]);

        }


  // PUT BRACKETS[] HERE IN PARAMETER LIST

        private void ChangeArray(int[] arrNumbers)

        {

            arrNumbers[3] = 50;

            return;

  }
The output of this program is:

Before calling method: 100

After calling method: 50
Notice that the method ChangeArray actually changes the contents of the array.  This is not what we get when we send a regular primitive variable in as a parameter (instead a copy gets made).  The way that arrays are passed is always by reference.  That is, if we change the contents of an array inside some method, the changes will be reflected back in the caller.  

This behavior arises because it is often easer to pass by reference.  One reason for this is efficiency – if arrays were passed by value, it would mean copying the entire contents of the array.  If the array was very large, this would take a long time.
Arrays Are Objects

An array happens to be an object. This means that there are methods and properties associated with them.  Here are two that may be useful:


arrayName.Length

// Returns number of items the array can hold


arrayName.GetType()

// Returns back the type of the array (e.g. int)

There are many more methods available (we may see a few of them later).

Array Example – Trivia Game
Going back to the trivia game scenario, let’s actually write a program to play the trivia game.  First we need a database of trivia questions.  Let’s say we have come up with the following questions followed by the answer:
The possession of more than two sets of chromosomes is termed?

polyploidy

Age of Amelia Earhart when she disappeared.

39

Actor whose real name was Marion Morrison

John Wayne
This psychologist taught pigeons how to play ping pong
B.F. Skinner
I am the geometric figure most like a lost parrot

polygon

For a real game we would probably have a lot more questions!  Next, let’s declare variables that will store the questions, answers, and point values.  Since we will be using these in many methods in our program, let’s declare them as Class member variables.  
       private string[] questions;

       private string[] answers;

We could have set the size of each to 5, but we’ll do that later when we load up the questions.   At this point we have two array variables, but space in memory has not yet been allocated to them.  We need to use the “new” keyword to allocate memory to the arrays.
Here is code that can input the data into the arrays.  It could go into the Load event of the entire form so it is executed when the program starts:

        private void Form1_Load(object sender, EventArgs e)

        {

            int numQuestions = 5;

            // Allocate memory for the arrays

            questions = new string[numQuestions];

            answers = new string[numQuestions];

            // Manually set each question and answer.

            // It would be a little better to load these from a file.
            questions[0] = "The possession of more than two sets of chromosomes is termed?";

            answers[0] = "polyploidy";

            questions[1] = "Age of Amelia Earhart when she disappeared.";

            answers[1] = "39";

            questions[2] = "Actor whose real name was Marion Morrison";

            answers[2] = "John Wayne";

            questions[3] = "This psychologist taught pigeons how to play ping pong";

            answers[3] = "B.F. Skinner";

            questions[4] = "I am the geometric figure most like a lost parrot";

            answers[4] = "polygon";

        }
Next let’s design our form so that the player can type in answers to questions:
[image: image1.png]EB Trivia Game

TiDuestiorklun

Question goes here





The top label is named lblQuestionNum and the second label is named lblQuestion.  These will be used to print out the question number and the question.
First, let’s make the game so it simply asks all questions, outputs if the player is correct or not, and then outputs the total score.  To keep track of these we need some new variables at the class level:

private int score = 0;                  // Player's score

private int indexCurrentQuestion = 0;   // Tracks if question 0-4


score is an int that tracks our score.   indexCurrentQuestion keeps track of which question we are asking, in terms of its position in the array, and will start at 0 and go up to 4, the index of the last question.  

To modularize our program a bit, we will need to show a question and to check if an answer is correct, so let’s make a method for showing a question:

        private void ShowQuestion()

        {

            lblQuestionNum.Text = "Question #" + 




indexCurrentQuestion.ToString();

            lblQuestion.Text = questions[indexCurrentQuestion]; 

            txtAnswer.Text = "";       // Blank out any answer 

       }
Next let’s make a method to check if an answer passed in is the right one.  We’ll convert both to lowercase so the player doesn’t have to worry about typing answers in the upper and lowercase.  This method returns true if the guess is correct.  Since it returns true or false, the return type is a bool.
        private bool IsCorrect(string guess)

        {

            // Get the answer to the current question in lowercase

            string answer = answers[indexCurrentQuestion].ToLower();

            // Convert the guess to lowercase

            guess = guess.ToLower();

            // CompareTo returns 0 if the two strings are the same

            if (answer == guess)

            {

                return true;

            }

            else

            {

                return false;

            }

        }
We should show the first question when the program is first executed, so at the end of the form load event code, add:


ShowQuestion()
Now we can fill in code for the button click event:

        private void btnSubmit_Click(object sender, EventArgs e)

        {

            // See if the answer submitted is correct

            if (IsCorrect(txtAnswer.Text))

            {

                MessageBox.Show("That's right!  You earned 1 point."); 

                score += 1;
            }

            else

            {

                MessageBox.Show("WRONG!  The correct answer is: " +

                    answers[indexCurrentQuestion]);

            }

            // Move on to next question unless it's the end of the game

            if (indexCurrentQuestion == 4)

            {

                MessageBox.Show("Thats the end of the game. " +

                    "Your score is " + score.ToString());

                // Disable the button to end the game

                btnSubmit.Enabled = false;

            }

            else

            {

                indexCurrentQuestion++;  // Move on to next Q

                ShowQuestion();

            }

        }
How could we change the numbering so from the player’s perspective, we are answering questions 1-5 instead of 0-4?

One modification we might like to make is to allow the user to submit the answer by pressing the enter key instead of having to click on the button.  We can handle this by adding code to the KeyPress event for the textbox:
        private void txtAnswer_KeyPress(object sender,


    KeyPressEventArgs e)

        {

            // Calls the button_click method

            // if the key pressed has code 13 (Enter)

            if (e.KeyChar == 13)

            {

                btnSubmit_Click(sender, e);

            }

       }
This invokes the btnSubmit_Click code when the enter key is pressed.  The enter key corresponds to 13.

Another (out of many!) final touches that would improve the program would be to display the current score on the form.  You should have a good idea on how to do this!
