Reading Data from a Text File

If you have stored data in a text file, using a program such as Notepad, you can read it with C#. Reading from a file is useful to load the program with large amounts of data that would otherwise be tedious to type.

Data can be stored in files and accessed with a StreamReader object.

The steps to use the StreamReader object are as follows:

1. Add the following to the top of your class:

using System.IO;

This tells C# that you want to use the code defined in the System.IO namespace, which includes ways to read from and write to files.

2. Write a statement of the form

StreamReader readerVar;
A StreamReader is an object from the Input/Output class that can read a stream of characters coming from a disk or coming over the Internet. The statement declares the variable readerVar to be of type StreamReader.
3. Write a statement of the form
readerVar = new StreamReader(filepath);
where filepath identifies the file to be read. This statement establishes a communications link between the computer and the disk drive for reading data from the disk. Data then can be input from the specified file and assigned to variables in the program. This assignment statement is said to “open the file for input.”
Just as with other variables, the declaration and assignment statements in Steps

1 and 2 can be combined into the single statement:

StreamReader readerVar = new StreamReader(filepath);
If the filepath contains the \ character, don’t forget that this is the same as the escape character, so you need two slashes \\ to represent a single slash. Another option is to put the @ symbol in front of the string in which case you need only one slash, e.g. @"c:\myfile.txt"
4. Read items of data in order, one at a time, from the file with the ReadLine method.

Each datum is retrieved as a string. A statement of the form
strVar = readerVar.ReadLine();
causes the program to look in the file for the next unread line of data and assign it to the variable strVar. The data can be assigned to a numeric variable if it is converted to a numeric type with the usual statements, e.g.:

intVar = int.Parse(readerVar.ReadLine());

Note: If all the data in a file have been read by ReadLine statements and another item is requested by a ReadLine statement, the item retrieved will have the value null.

5. If you want to check to see if we have read everything in the file use the following:

readerVar.EndOfStream

This property returns false if there is still data to be read, and true if we have read everything and are now at the end of thefile.

6. After the desired items have been read from the file, terminate the communications link set in Step 2 with the statement
readerVar.Close();
As an example, consider a file of university employees that is stored in the file C:\PEOPLE.TXT and it contains the following:

Cotty, Manny

English

40205

Kick, Anita

Dance

45495

Guini, Lynn

Culinary Arts

67300

DeBanque, Robin

English

44500

Wright, Eaton

Culinary Arts

75800

Bugg, June

Biology

95300
This says that Manny Cotty is in the English department and makes $40,205 a year.
Anita Kick is in the Dance department and makes $45,495 a year.

Etc.

Let’s say we want a program that outputs the names and salaries of people in the English department. Here is a program that reads in three lines of data at a time, checks if the department is English, and if so outputs the name and salary:
 System.IO.StreamReader rv = new

System.IO.StreamReader("c:\\people.txt");

 while (!rv.EndOfStream)

 {

 string name = rv.ReadLine();

 string department = rv.ReadLine();

 int salary = int.Parse(rv.ReadLine());

 if (department=="English")

 {

 Console.WriteLine(name + " makes " + salary);

 }

 }

 rv.Close();
The output is:

Cotty, Manny makes 40205

DeBanque, Robin makes 44500
Additional class example: Haberman breast cancer data
Writing To Sequential Text Files

Here we’ll cover just the very basics of how to write and create a text file from your program.

Creating a text file is a lot like opening a file for reading, except we open it for creation instead. The steps to create a new text file and write data to it are:

1. Add using System.IO; to the top of the program.

2. Create a StreamWriter object:

StreamWriter swriter = new StreamWriter(filepath);
This will create a blank file with the given pathname. If the file already exists, it will be destroyed! (There is a separate constructor, new StreamWriter(filepath, true) that will append to an existing file.
If we don’t specify a full path then by default the file is placed in the current working directory (the bin directory of the project, if running from visual studio)

3. To place data in the file, use WriteLine, as we have used to write data to the console, except precede it by the Stream Writer variable:

swriter.WriteLine(data);
4. When you are done recording data to the file, close it:

swriter.Close();
The close statement breaks the link with the file on disk and frees up space in memory. Note that if you write data to a file and try to look at it with a text editor, the data may not actually be saved to disk until the file is closed.
Here is an example that writes “hello there” and the number 42 to disk:

StreamWriter swriter = new StreamWriter("c:\\homeworks\\output.txt");

swriter.WriteLine("hello there!");

swriter.WriteLine(42);

swriter.Close();
In an ideal setting, any file input/output should be enclosed inside a try/catch block in case there are File I/O errors (e.g. you don’t have file permissions, the disk is full, etc.)
