Passing Parameters by Value
So far we have been passing parameters to methods using a technique called “Pass By Value”. When a parameter gets sent to a method a copy of its value is made. This means that any changes made to the parameter inside the method don’t affect the original variable.
For example:

 private void button1_Click(object sender, EventArgs e)

 {

 int x = 1;

 Console.WriteLine("In button click pre-call - " + x);

 PassByValue(x);

 Console.WriteLine("In button click post-call - " + x);

 }

 private void PassByValue(int x)

 {

 x = 100;

 Console.WriteLine("In method - " + x);

 }

The output of this program is:

In button click pre-call - 1

In method - 100

In button click post-call - 1

The way to think of what is going on is that the variable “x” in PassByValue is a separate variable than the one defined inside button1_Click. It gets a copy of the value sent it. This way any changes made to the x inside PassByValue don’t affect the original variable. Usually this is desirable so that when you call a method you know that your variables won’t get set to unknown values when the method returns.

[image: image1.emf]private void ValMethod(intx)

int x= 3

ValMethod(x)

Memory

X 3

X 3

Copy of variable X in ValMethod is distinct from x defined elsewhere

Passing Parameters by Reference
There is another way to pass parameters that does change their original value. If the only change (aside from renaming the method) is to put a ref in front of the variable in the definition of the method and when we call it:
 private void button1_Click(object sender, EventArgs e)

 {

 int x = 1;

 Console.WriteLine("In button click pre-call - " + x);

 PassByReference(ref x);

 Console.WriteLine("In button click post-call - " + x);

 }

 private void PassByReference(ref int x)

 {

 x = 100;

 Console.WriteLine("In method - " + x);

 }

The output of this program is:

In button click pre-call - 1

In method - 100

In button click post-call - 100

The value of the original variable is now changed! When we put the “ref” in front this means to pass the parameter by reference. Instead of making a copy of the variable, the address in memory of the original variable is sent in. This allows the method to access and change the original variable.

This is useful when you have a method that needs to set a value or return multiple values back. You can only return a single value using the return statement. But you can implicitly return multiple values using the ref parameter.

[image: image2.emf]private void RefMethod(ref intx)

intx = 3;

RefMethod(ref x)

Memory

X 3

X

address of original X

Variable X in RefMethod really references the original variable x

Pass by reference example:

Make a method that takes three integers as input and returns the min and the max using the ref parameter.
E.g.:

FindMinMax(3,4,2,ref min, ref max);

Would set min to 2 and max to 4.

Objects are always passed by Reference
We will get into objects more later, but they include things like Buttons, Textboxes, Labels, or anything we declare with the keyword “new”. At this point, the important idea is that they are always passed by reference. This is primarily for efficiency – an object like a Picturebox could contain a lot of data, so it would be very inefficient to make a copy of it every time it is sent as a parameter. However, if we instead send just the address of the Picturebox in memory, that is efficient and takes up little space.

This means that if you pass an object like a Button as a parameter, and change the contents of the object, then those changes will be made in the original object.

Example:

 private void button1_Click(object sender, EventArgs e)

 {

 Console.WriteLine(button1.Text);

 PassByReference(button1);

 Console.WriteLine(button1.Text);

 }

 private void PassByReference(Button aButton)

 {

 aButton.Text = "You clicked me";

 }

The output is:

button1

You clicked me

This can be quite useful in most cases because the parameterized variable acts as a proxy for some other object.

Class Example:

Re-do the Monty Hall problem but use a method for the logic of determining what door to display. As parameters, the method can take buttons represent the clicked door, prize door, and door to reveal. This will eliminate the (almost) redundant code for the three button clicks.

