Defining Class Methods (aka Functions)
So far, we have been working with relatively small programs using one or two button click events. For larger programs the technique of dividing a program up into manageable pieces is typically done by constructing a number of smaller methods and then piecing them together as modules. This type of modularization has a number of benefits:

· Avoids repeat code (reuse a method many times in one program)

· Promotes software reuse (reuse a method in another program)

· Promotes good design practices (Specify interfaces)

· Promotes debugging (can test an individual method to make sure it works properly)

Let’s examine how to write programs using methods.

Before starting

We’ve already been using quite a few methods in our programs. Calls like WriteLine(), Show(), and rnd.Next() are all methods that have been written by someone else that we’re using. Note how the innards of these functions are all hidden from you – as long as you know the interface, or the input/output behavior, you are able to use these methods in your own programs. This type of data-hiding is one of the goals of methods and classes, so that higher-level code doesn’t need to know the details of particular tasks.

Before starting and jumping into writing programs using methods, it is a good idea to look at the problem you are trying to address and see how it might logically be broken up. If you jump straight into coding you might not be defining methods that make sense and will have to throw away what you did and start over. In general we like methods that are as self-contained as possible, with as few dependencies as possible. This makes it easier to reuse them.
Defining a Method

To define a method use the following template:

modifier return_type methodName(type1 varName1, type2 varName2, …)

{

 Instructions

 return (return_value);

}

Modifier is either public or private to indicate if this method is available from outside the class.

Return_type is a data type returned by the method. For example, int, float, long, another Class, or void if we have no data to return. If we are returning a value, we must specify what value the method returns with the return statement. Usually this is at the end of the method, but it could be anywhere inside the method.

methodName is an identifier selected by the user as the name for the method.

The list of parameters are input variables that are passed to the method from the caller. This gives data for the method to operate on. To define these parameters, specify the type of the variable followed by the variable name. Multiple parameters are separated by commas.

Here is a method that converts a temperature in Fahrenheit to Celsius, and some code in main that invokes it:

 private double convFahrenheitToCelsius(double tempFahr)

 {

 double tempCel;

 tempCel = (tempFahr - 32) * 5 / 9;

 return tempCel;

 }

 private void button1_Click(object sender, EventArgs e)

 {

 double tempF, tempC;

 tempF = double.Parse(txtTemp.Text);

 tempC = convFahrenheitToCelsius(tempF);

 MessageBox.Show("The temperature in Celsius is " +

 tempC.ToString());

 }
Starting in the button click, tempF is set to a value entered into the textbox. Let’s say that it is set to 100. This value is then bound to the variable tempFahr in the method.

The method then creates a local variable, tempCel, computes its value (50-32)*5/9, which is 37.7, and then 37.7 is returned. When the method exits, tempCel is destroyed. The return value is copied into tempC in the button click event.

Here is another example to calculate the density of a state:

 private string calculateDensity(string state, double pop,

 double area)

 {

 string densityString = "";

 double rawdensity, density;

 rawdensity = pop / area;

 density = Math.Round(rawdensity, 2); // Round to 2 decimal places

 densityString = "The density of " + state + " is " +

 density.ToString();

 return densityString;

 }

 private void button1_Click(object sender, EventArgs e)

 {

 MessageBox.Show(calculateDensity("Alaska", 627000, 591000));

 MessageBox.Show(calculateDensity("Hawaii", 1212000, 6471));

 }
In this example the method takes three parameters, a state name, population, and area. The order of the parameters determines which value is sent in as what variable and the data types must match!

It would probably make more sense for calculateDensity to return a double that contains the formatted density, but this does illustrate that a return value can differ from the input parameter values.

Here is another example that returns no value and takes no values as input:

 private void showHelpMessage()

 {

 MessageBox.Show("If this was a real program, a " +

 "help message would be displayed.");

 }

 private void button1_Click(object sender, EventArgs e)
 {

 showHelpMessage();

 }
Class Example: Write the method to simulate rolling two six sided dice and returning its sum:

 public partial class Form1 : Form

 {

 Random rnd = new Random();

 ...
 private void button1_Click(object sender, EventArgs e)

 {

 int diceroll;

 diceroll = RollDice();

 Console.WriteLine(diceroll);

 }

 }

Class Example:

Rewrite the twix bar diet calculation program to use a method. The method should take the input of gender (Boolean if male or female), age, weight, height, and Calories per package. It should return the number of packages to eat as a double.

