
1

Chapter 4 - VB.Net by Schneider 1

Chapter 4 General
Procedures

• 4.1 Sub Procedures, Part I
• 4.2 Sub Procedures, Part II
• 4.3 Function Procedures
• 4.4 Modular Design

Chapter 4 - VB.Net by Schneider 2

4.1 Sub Procedures, Part I
• Sub Procedures
• Calling Other Sub Procedures

2

Chapter 4 - VB.Net by Schneider 3

Procedures
• So far, most of the code has been inside a single

method for an event
• Fine for small programs, but inconvenient for large ones
• Much better to divide program into manageable pieces

• Benefits of modularization
• Avoids repeat code (reuse a function many times in one

program)
• Promotes software reuse (reuse a function in another

program)
• Promotes good design practices (Specify function interfaces)
• Promotes debugging (can test an individual module to make

sure it works properly)

Chapter 4 - VB.Net by Schneider 4

Devices for modularity
• VB.NET has two devices for breaking

problems into smaller pieces:
• Sub procedures

• Short for ‘Subroutine’ or ‘Subprogram’
• Executes a block of statements, returns no value

• Function procedures
• Identical to a sub, except returns a value

3

Chapter 4 - VB.Net by Schneider 5

Sub Procedures
• Performs one or more related tasks
• General syntax, code goes inside the

class for the form:

Sub ProcedureName()
statements

End Sub

Chapter 4 - VB.Net by Schneider 6

Calling a Sub procedure
• The statement that invokes a Sub

procedure is also referred to as a call
statement

• A call statement looks like this:
ProcedureName()

You’ve already been using this for pre-defined
functions, like Trim()

4

Chapter 4 - VB.Net by Schneider 7

Naming Sub procedures
• The rules for naming Sub procedures are

the same as the rules for naming
variables.

Chapter 4 - VB.Net by Schneider 8

Sub ExplainPurpose()

Example
lstResult.Items.Clear()
ExplainPurpose()
lstResult.Items.Add("")

lstResult.Items.Add("This program displays a sentence")

lstResult.Items.Add("identifying two numbers and their sum.")

End Sub

5

Chapter 4 - VB.Net by Schneider 9

Code Re-Use
• If in another place in the code you wanted to explain

the purpose, you can just invoke the subroutine:

• Avoids duplicate the same code in many places
• If you ever want to change the code, only one place

needs to be changed

Sub OtherCode(…)
ExplainPurpose()
‘ Presumably other code here

End Sub

Chapter 4 - VB.Net by Schneider 10

Passing
• You can send items to a Sub procedure

Sum(2, 3)

Sub Sum(num1 As Double, num2 As Double)
Console.WriteLine(num1+num2)

End Sub

• In the Sum Sub procedure, 2 will be stored in num1
and 3 will be stored in num2 and the sum will be output
to the console

6

Chapter 4 - VB.Net by Schneider 11

Passing
• We can pass variables too:

x = 2
y = 3
Sum(x,y) ‘ Same as Sum(2, 3)

• The variables are evaluated prior to calling the
subroutine, and their values are accessible via
the corresponding variable names in the sub

Chapter 4 - VB.Net by Schneider 12

Population Density Sub
• Subroutine to calculate population

density:

Sub CalculateDensity(ByVal state As String, _
ByVal pop As Double, _
ByVal area As Double)

Dim rawDensity, density As Double
rawDensity = pop / area
density = Math.Round(rawDensity, 1) ' Round to 1 decimal place
Console.Write("The density of " & state & " is " & density)
Console.WriteLine(" people per square mile.")

End Sub

7

Chapter 4 - VB.Net by Schneider 13

Parameters and Arguments
CalculateDensity("Alaska", 627000, 591000)

Arguments – what you send to
a Sub procedure

Parameters – place holders for
what the sub procedure

receives

Sub CalculateDensity(ByVal state As String, _

ByVal pop As Double, _

ByVal area As Double)

If ByVal left off,
VB.NET will add it

Chapter 4 - VB.Net by Schneider 14

Figure 4.2

8

Chapter 4 - VB.Net by Schneider 15

Code Reuse
• By making CalculateDensity a procedure

subroutine, we can reuse it, e.g.:

CalculateDensity(“Hawaii”, 1212000, 6471)

Chapter 4 - VB.Net by Schneider 16

Sub Procedures Calling Other
Sub Procedures

Private Sub btnDisplay_Click(...)
Handles btnDisplay.Click

FirstPart()
Console.WriteLine(“a”)

End Sub

Sub FirstPart()
SecondPart()
Console.WriteLine(“b”)

End Sub

Sub SecondPart()
Console.WriteLine(“c”)

End Sub

Output:
c
b
a

9

Chapter 4 - VB.Net by Schneider 17

In Class Exercise
• Write a Sub procedure that takes as arguments an

animal and sound for the “Old McDonald Had A Farm”
song and outputs the verse, e.g.:
• Old McDonald had a farm, E-I-E-I-O.
• And on his farm he had a cow, E-I-E-I-O.
• With a moo moo here, and a moo moo there,
• Here a moo, there a moo, everywhere a moo moo.
• Old McDonald had a farm, E-I-E-I-O

• Complete the program in the Form Load event to
output the verses for a cow, chicken, and lamb.

Chapter 4 - VB.Net by Schneider 18

4.2 Sub Procedures, Part II
• Passing by Value
• Passing by Reference
• Local Variables
• Class-Level Variables
• Debugging

10

Chapter 4 - VB.Net by Schneider 19

Passing by Value
• ByVal stands for “By Value”
• ByVal parameters retain their original

value after Sub procedure terminates

Chapter 4 - VB.Net by Schneider 20

ByVal Example
Sub CallingSub()

Dim y As Integer
y = 5
Console.WriteLine("y is " & y)
ValSub(y)
Console.WriteLine("y is " & y)

End Sub

Sub ValSub(ByVal x As Integer)
x = 10
Console.WriteLine(" x is " & x)

End Sub

Output?

11

Chapter 4 - VB.Net by Schneider 21

ByVal Example – Y to X
Sub CallingSub()

Dim x As Integer
x = 5
Console.WriteLine(“x is " & x)
ValSub(x)
Console.WriteLine(“x is " & x)

End Sub

Sub ValSub(ByVal x As Integer)
x = 10
Console.WriteLine("x is " & x)

End Sub

Output?

Chapter 4 - VB.Net by Schneider 22

Passing by Reference
• ByRef stands for "By Reference"
• ByRef parameters can be changed by

the Sub procedure and retain the new
value after the Sub procedure terminates

12

Chapter 4 - VB.Net by Schneider 23

ByRef Example
Sub CallingSub()

Dim y As Integer
y = 5
Console.WriteLine("y is " & y)
RefSub(y)
Console.WriteLine("y is " & y)

End Sub

Sub RefSub(ByRef x As Integer)
x = 10
Console.WriteLine(" x is " & x)

End Sub

Output?

Chapter 4 - VB.Net by Schneider 24

ByVal Example – Y to X
Sub CallingSub()

Dim x As Integer
x = 5
Console.WriteLine(“x is " & x)
RefSub(x)
Console.WriteLine(“x is " & x)

End Sub

Sub RefSub(ByRef x As Integer)
x = 10
Console.WriteLine("x is " & x)

End Sub

Any
Difference in

Output?

13

Chapter 4 - VB.Net by Schneider 25

Local Variables
• Variables declared inside a Sub

procedure with a Dim statement
• Space reserved in memory for that

variable until the End Sub – then the
variable ceases to exist

Chapter 4 - VB.Net by Schneider 26

Local Variable Example
Sub LocalTester()

TestLocals()
TestLocals()

End Sub

Sub TestLocals()
Dim l As Double
Console.WriteLine("l is " & l)
l = 10
Console.WriteLine("l is " & l)

End Sub

Output:
l is 0
l is 10
l is 0
l is 10

14

Chapter 4 - VB.Net by Schneider 27

Class-Level Variables
• Visible to every procedure in a form’s

code without being passed
• Dim statements for Class-Level variables

are placed
• Outside all procedures
• At the top of the program region
• Useful for variables you would like to use

within many procedures on the form

Chapter 4 - VB.Net by Schneider 28

Class Level Example
Public Class Form1

Inherits System.Windows.Forms.Form

Dim strName As String

Private Sub Button1_Click(…) Handles Button1.Click
strName = InputBox("Enter your name")

End Sub

Private Sub Button2_Click(…) Handles Button2.Click
Console.WriteLine("Your name is " & strName)

End Sub
End Class

15

Chapter 4 - VB.Net by Schneider 29

Scope
• Class-level variables have class-level

scope and are available to all procedures
in the class

• Variables declared inside a procedure
have local scope and are only available
to the procedure in which they are
declared

Chapter 4 - VB.Net by Schneider 30

Debugging
• Programs with Sub procedures are

easier to debug
• Each Sub procedure can be checked

individually before being placed into the
program

• A little later we will see how to use the
built-in debugging tool

16

Chapter 4 - VB.Net by Schneider 31

In-Class Exercise
• Write a subroutine that swaps two

integer variables; e.g. Swap(x,y) results
in exchanging the values in X and Y

Chapter 4 - VB.Net by Schneider 32

4.3 Function Procedures
• User-Defined Functions Having Several

Parameters
• Comparing Function Procedures with

Sub Procedures
• Collapsing a Procedure with a Region

Directive

17

Chapter 4 - VB.Net by Schneider 33

User-Defined Functions
• Similar to a Sub Procedure, but Functions

always return one value
• Syntax:
Function FunctionName(ByVal var1 As Type1, _

ByVal var2 As Type2, _

…) As dataType

statement(s)

Return expression

End Function

Chapter 4 - VB.Net by Schneider 34

Some Built-In Functions
Function Example Input Output

Int Int(2.6) is 2 number number

Chr Chr(65) is “A” number string

Asc Asc(“Apple”) is 65 string number

FormatNumber FormatNumber(12
345.628, 1) is
12,345.6

number, number string

18

Chapter 4 - VB.Net by Schneider 35

Sample
Private Sub btnDetermine_Click(...)

Handles btnDetermine.Click

Dim name As String

name = txtFullName.Text

txtFirstname.Text = FirstName(name)

End Sub

Function FirstName(ByVal name As String) As String

Dim firstSpace As Integer

firstSpace = name.IndexOf(" ")

Return name.Substring(0, firstSpace)

End Function

Function
call

Return
statement

Chapter 4 - VB.Net by Schneider 36

Having Several Parameters
Private Sub btnCalculate_Click(...)

Handles btnCalculate.Click

Dim a, b As Double

a = CDbl(txtSideOne.Text)

b = CDbl(txtSideTwo.Text)
txtHyp.Text = CStr(Hypotenuse(a, b))

End Sub

Function Hypotenuse(ByVal a As Double, _

ByVal b As Double) As Double
Return Math.Sqrt(a ^ 2 + b ^ 2)

End Function

19

Chapter 4 - VB.Net by Schneider 37

User-Defined Functions
Having No Parameters
Private Sub btnDisplay_Click(...) _

Handles btnDisplay.Click

txtBox.Text = Saying()

End Sub

Function Saying() As String

Return InputBox("What is your" _

& " favorite saying?")

End Function

Chapter 4 - VB.Net by Schneider 38

Comparing Function Procedures
with Sub Procedures

• Subs are accessed using a call
statement

• Functions are called where you would
expect to find a literal or expression

• For example:
• Result = functionCall
• lstBox.Items.Add (functionCall)

20

Chapter 4 - VB.Net by Schneider 39

Functions vs. Procedures
• Both can perform similar tasks
• Both can call other subs and functions
• Use a function when you want to return

one and only one value
• A function can also be declared with ByRef

arguments to return multiple values back
through the argument list

Chapter 4 - VB.Net by Schneider 40

Collapsing a Procedure with a
Region Directive

• A procedure can be collapsed behind a
captioned rectangle

• This task is carried out with a Region directive.
• To specify a region, precede the code to be

collapsed with a line of the form
#Region "Text to be displayed in the box."

• and follow the code with the line
#End Region

21

Chapter 4 - VB.Net by Schneider 41

Region Directives

Chapter 4 - VB.Net by Schneider 42

Collapsed Regions

22

Chapter 4 - VB.Net by Schneider 43

In-Class Exercise
• The following example shows how to generate

a random number: (we’ll explain the new
later)
• Dim r As New Random()
• r.Next(intMin, intMax)

• Returns a random number ≥ intMin, < intMax

• Write a function named RollDice that simulates
rolling two six-sided dice and returns the sum
of the roll
• Print out several rolls to see if it is working

Chapter 4 - VB.Net by Schneider 44

4.4 Modular Design
• Top-Down Design
• Structured Programming
• Advantages of Structured Programming

23

Chapter 4 - VB.Net by Schneider 45

Design Terminology
• Large programs can be broken down

into smaller problems
• "divide-and-conquer" approach called

"stepwise refinement"
• Stepwise refinement is part of top-down

design methodology

Chapter 4 - VB.Net by Schneider 46

Top-Down Design
• General problems are at the top of the

design
• Specific tasks are near the end of the

design
• Top-down design and structured

programming are techniques to enhance
programmers' productivity

24

Chapter 4 - VB.Net by Schneider 47

Top-Down Design Criteria
1. The design should be easily readable and

emphasize small module size.
2. Modules proceed from general to specific as

you read down the chart.
3. The modules, as much as possible, should be

single minded. That is, they should only
perform a single well-defined task.

4. Modules should be as independent of each
other as possible, and any relationships
among modules should be specified.

Chapter 4 - VB.Net by Schneider 48

Top-Level Design HIPO Chart

HIPO = Hierarchical Input Process Output

25

Chapter 4 - VB.Net by Schneider 49

Detailed HIPO Chart

Chapter 4 - VB.Net by Schneider 50

Structured Programming
• Control structures in structured programming:
• Sequences: Statements are executed one

after another.
• Decisions: One of two blocks of program code

is executed based on a test for some
condition.

• Loops (iteration): One or more statements
are executed repeatedly as long as a specified
condition is true.

26

Chapter 4 - VB.Net by Schneider 51

Advantages of Structured
Programming

• Goal to create correct programs that are
easier to
• write
• understand
• modify

• "GOTO –less" programming

Chapter 4 - VB.Net by Schneider 52

Comparison of Flow Charts

Goto Goto Removed

27

Chapter 4 - VB.Net by Schneider 53

Easy to Write
• Allows programmer to first focus on the

big picture and take care of the details
later

• Several programmers can work on the
same program at the same time

• Code that can be used in many
programs is said to be reusable

Chapter 4 - VB.Net by Schneider 54

Easy to Debug
• Procedures can be checked individually
• A driver program can be set up to test

modules individually before the complete
program is ready

• Using a driver program to test modules
(or stubs) is known as stub testing

28

Chapter 4 - VB.Net by Schneider 55

Easy to Understand
• Interconnections of the procedures reveal the

modular design of the program.
• The meaningful procedure names, along with

relevant comments, identify the tasks
performed by the modules.

• The meaningful variable names help the
programmer to recall the purpose of each
variable.

Chapter 4 - VB.Net by Schneider 56

Easy to Change
• Because a structured program is self-

documenting, it can easily be deciphered
by another programmer (at least, easier
than if it was unstructured!)

29

Chapter 4 - VB.Net by Schneider 57

Object-Oriented Programming
• an encapsulation of data and code that

operates on the data
• objects have properties, respond to

methods, and raise events.

• We will discuss OOP in more detail the
last week of class

