
Arrays Part 2

We’ve covered enough material so far that we can write very sophisticated programs.

Let’s cover a few more examples that use arrays.

First, once in a while it may be useful to be able to access controls on your forms through

an array. Consider a form with five textboxes, and a button. We might want to calculate

the average of all the numbers in the textboxes:

If the textboxes are named txtNum1, txtNum2, txtNum3, etc. then we could write code

in the Average button to the tune of:

 Dim intAve As Integer

intAve = CInt(txtNum1.Text) + CInt(txtNum2.Text) + _

 CInt(txtNum3.text) + _

 CInt(txtNum4.Text) + CInt(txtNum5.Text)

 intAve = intAve \ 5

 MessageBox.Show("The average is " & intAve)

This works fine, but it is somewhat tedious. Besides, what if we had 50 textboxes? It

would be much nicer if there was some way to make an array of textboxes and then we

could loop over the array:

 sum = 0

 For i = 0 to aryTextBoxes.Length – 1

 sum += CInt(aryTextBoxes(i).Text)

 Next

 intAve = sum \ aryTextBoxes.Length

If we could set up this array, then the loop will sum up all the entries in the textboxes and

divide by the number of entries to get the average.

There are a couple of ways to perform the above; the simplest way is a bit tedious to set

up, but once set up we can use the arrays for all our references.

In this simplest method we do the following:

1) Design our form with all the textboxes, labels, etc. For example, we might make

a form with 5 textboxes.

2) Make an array of with the same data type as the control added to the form. The

array should be the same size as the number of controls on the form. For

example, we might make an array of TextBox that can hold five textboxes (0-4):

Dim aryTextBoxes(4) as TextBox

3) Assign each entry in the array to one of the textboxes on the form. You have to

do this in code, so normally it would go in someplace like the form load event, so

it is executed once when the program first starts up:

aryTextBoxes(0) = txtNum1

aryTextBoxes(1) = txtNum2

aryTextBoxes(2) = txtNum3

aryTextBoxes(3) = txtNum4

aryTextBoxes(4) = txtNum5

This is the part that can be tedious, but it only has to be done once. This sets a

reference or pointer to the textbox on the form:

4) You can now access the array and it will be referencing one of the textboxes; e.g.

aryTextBoxes(3).Text will access the same thing as txtNum4.Text.

We could now programmatically compute the average of all textbox entries as:

 Dim intAve As Integer

 Dim sum As Integer = 0

 Dim i As Integer

 For i = 0 To aryTextBoxes.Length - 1

 sum += CInt(aryTextBoxes(i).Text)

 Next

 intAve = sum \ aryTextBoxes.Length

 MessageBox.Show("The average is " & intAve)

Grade Calculator

Here is an example that may actually be of practical use to you! Blackboard’s gradebook

stores grades for you, but doesn’t let you run any “what-if” scenarios to see what your

final grade will be depending upon what you get on assignments that have not yet been

graded. For example, you might want to know what grade you need to get on the Final in

order to get at least 90% in the class. Let’s write a program that calculates your grade (as

a percentage) based on values you can type into a form.

In our case, we have three categories:

 Exams 50%

 Assignments 30%

 Labs 20%

Each item per category is worth the same amount. To compute the percentage of your

final grade based on the exams we would use the formula:

n

sExamTotalPo

GradeExam

sExamTotalPo

GradeExam

sExamTotalPo

GradeExam

tExamPercen
n

n









+++

×=

int
...

2int

2

1int

1

)5.0(

Similarly, we can compute the percentage from assignments and labs:

n

sAssignTotalPo

nGradeAssig

sAssignTotalPo

nGradeAssig

sAssignTotalPo

nGradeAssig

PercentAssignment
n

n









+++

×=

int
...

2int

2

1int

1

)3.0(

n

sLabTotalPo

GradeLab

sLabTotalPo

GradeLab

sLabTotalPo

GradeLab

LabPercent
n

n









+++

×=

int
...

2int

2

1int

1

)2.0(

Our total percentage is then ExamPercent + AssignmentPercent + LabPercent

In our specific class, we have two exams, five labs, and five assignments. Let’s design

our form as follows:

The exams textboxes are named txtExam1 and txtExam2, with their max scores in

txtExam1Max and txtExam2Max. I set default values for all the textboxes.

The same naming scheme applies to the labs and the assignments. The labs are named

txtLab1, txtLab2, etc. and their max scores in txtLab1Max, txtLab2Max, etc. The

assignments are txtAssignment1, txtAssignment2, … txtAssignment1Max,

txtAssignment2Max, … finally, the overall grade will be displayed in lblGrade.

First, we can allocate space for all of the arrays. These are created as class variables:

 Dim aryLabGrades(4) As TextBox ' Five lab grades

 Dim aryLabGradesMax(4) As TextBox ' Max score for each lab

 Dim aryExamGrades(1) As TextBox ' Two exam grades

 Dim aryExamGradesMax(1) As TextBox

 Dim aryAssignmentsGrades(4) As TextBox ' Five homework grades

 Dim aryAssignmentsGradesMax(4) As TextBox

Next, in the Form_Load event, we can manually set each array entry to the corresponding

textbox on the form:

 ' Assign textboxes on the form to slots in the arrays

 aryLabGrades(0) = Me.txtLab1

 aryLabGrades(1) = Me.txtLab2

 aryLabGrades(2) = Me.txtLab3

 aryLabGrades(3) = Me.txtLab4

 aryLabGrades(4) = Me.txtLab5

 aryLabGradesMax(0) = Me.txtLab1Max

 aryLabGradesMax(1) = Me.txtLab2Max

 aryLabGradesMax(2) = Me.txtLab3Max

 aryLabGradesMax(3) = Me.txtLab4Max

 aryLabGradesMax(4) = Me.txtLab5Max

 aryExamGrades(0) = Me.txtExam1

 aryExamGrades(1) = Me.txtExam2

 aryExamGradesMax(0) = Me.txtExam1Max

 aryExamGradesMax(1) = Me.txtExam2Max

 aryAssignmentsGrades(0) = Me.txtAssignment1

 aryAssignmentsGrades(1) = Me.txtAssignment2

 aryAssignmentsGrades(2) = Me.txtAssignment3

 aryAssignmentsGrades(3) = Me.txtAssignment4

 aryAssignmentsGrades(4) = Me.txtAssignment5

 aryAssignmentsGradesMax(0) = Me.txtAssignment1Max

 aryAssignmentsGradesMax(1) = Me.txtAssignment2Max

 aryAssignmentsGradesMax(2) = Me.txtAssignment3Max

 aryAssignmentsGradesMax(3) = Me.txtAssignment4Max

 aryAssignmentsGradesMax(4) = Me.txtAssignment5Max

Finally, we will need to add the code in the Button Click event to compute the final grade

based upon what the user enters into the textboxes. Here is how we would compute just

the Exam percentage, which was algebraically specified as:

n

sExamTotalPo

GradeExam

sExamTotalPo

GradeExam

sExamTotalPo

GradeExam

tExamPercen
n

n









+++

×=

int
...

2int

2

1int

1

)5.0(

In this case we need a loop to calculate the numerator of the equation, divide by the

number of entries in the array, then multiply by 0.5:

 Dim sngExamComponent As Single = 0

 Dim i As Integer

 For i = 0 To aryExamGrades.Length - 1

 sngExamComponent += CSng(aryExamGrades(i).Text) / _

 CSng(aryExamGradesMax(i).Text)

 Next

 sngExamComponent = sngExamComponent / aryExamGrades.Length

 sngExamComponent = sngExamComponent * CSng(Me.txtExamPercent.Text)

The loop goes through each exam grades and adds together the grade divided by the max.

The whole thing is then divided by the number of grades and finally multiplied by the

weight for exams (in this case 0.50).

We can repeat this process for the lab and assignment component, then add them together

to get the final grade. Here is the whole piece of code:

 Dim sngExamComponent As Single = 0

 Dim sngAssignmentComponent As Single = 0

 Dim sngLabComponent As Single = 0

 Dim sngTotal As Single = 0

 Dim i As Integer

 ' Calculate the exam component

 For i = 0 To aryExamGrades.Length - 1

 sngExamComponent += CSng(aryExamGrades(i).Text) / _

 CSng(aryExamGradesMax(i).Text)

 Next

 sngExamComponent = sngExamComponent / aryExamGrades.Length

 sngExamComponent = sngExamComponent * CSng(Me.txtExamPercent.Text)

 ' Calculate the lab component

 For i = 0 To aryLabGrades.Length - 1

 sngLabComponent += CSng(aryLabGrades(i).Text) / _

 CSng(aryLabGradesMax(i).Text)

 Next

 sngLabComponent = sngLabComponent / aryLabGrades.Length

 sngLabComponent = sngLabComponent * CSng(Me.txtLabPercent.Text)

 ' Calculate the assignments component

 For i = 0 To aryAssignmentsGrades.Length - 1

 sngAssignmentComponent += CSng(aryAssignmentsGrades(i).Text) / _

 CSng(aryAssignmentsGradesMax(i).Text)

 Next

 sngAssignmentComponent = sngAssignmentComponent / _

 aryAssignmentsGrades.Length

 sngAssignmentComponent = sngAssignmentComponent * _

 CSng(Me.txtAssignmentsPercent.Text)

 ' Calculate overall by adding together each component
 sngTotal = sngAssignmentComponent + sngLabComponent + sngExamComponent

 Me.lblGrade.Text = CStr(sngTotal)

Here is a screenshot of the application in action. If we had the grades entered and blew

off the final (grade of 0) we’d still end up with 64%, a D overall.

Sokoban Game

As a much more complex example, let’s build a program to play the game of Sokoban.

Since this will be a fairly complex program, we’ll break it up into lots of smaller

milestones.

First, the object of Sokoban is to push all of crates onto their destinations. In our case,

we’ll use gems instead of crates. Here is a screenshot:

The alien is the player. He can only push the gems and the goal is to push all of

them to their destinations . The challenge becomes that gems may get stuck against

the wall or in a corner and can no longer be pushed, at which point the player must restart

the level from the beginning. A gem cannot be pushed if there is something blocking it

on the other side. If you would like to learn more about Sokoban, there is a lot of

information on wikipedia: http://en.wikipedia.org/wiki/Sokoban

Representing the Game Board

Our version of Sokoban will always be on a 10 cell tall by 10 cell high game board. To

represent the game board we can use a 2D array.

Let’s make it a 2D array of Strings. Each string will represent the item(s) that are in the

respective cell. We can use the following codes:

 " " (space) - Blank space

 "X" - Wall

 "A" - Alien

 "G" - Gem

 "F" - Final destination for gem, empty

 "P" - Final destination for gem, with a gem

 "a" - Alien over an empty final destination for a gem

For example, we could use the following 2D array of strings to represent our level:

XXXXXXXXXX

XA XXXXXX

X GGXXXXXX

X G XXXFXX

XXX XXXFXX

XXX FXX

XX X XX

XX XXXXX

XXXXXXXXXX

XXXXXXXXXX

This corresponds graphically with:

Why use these letter codes for items on the game board? One advantage is we can put

the game board in a text file and then load that file in our program. This lets us easily

create levels by simply editing a text file and no programming expertise is required.

Let’s say that we have a text file named level0.txt and it contains:

XXXXXXXXXX

XA XXXXXX

X GGXXXXXX

X G XXXFXX

XXX XXXFXX

XXX FXX

XX X XX

XX XXXXX

XXXXXXXXXX

XXXXXXXXXX

Here is code to load it into a 2D array:

Public Class frmSokoban

 Dim aryBoard(9, 9) As String ' Game board

 Private Sub frmSokoban_Load(. . .) Handles MyBase.Load

 ' Load in level0.txt

 Dim fileLevel As IO.StreamReader = _

 IO.File.OpenText("../../level0.txt")

 Dim x, y As Integer

 ' The levels are exactly 10 lines of 10 characters per line.

 ' Read in each line then loop and put each char into the array

 For y = 0 To 9

 Dim sLine As String

 sLine = fileLevel.ReadLine ' Read one whole line

 ' Put each character into the array

 For x = 0 To 9

 aryBoard(x, y) = sLine.Substring(x, 1)

 Next Next

 fileLevel.Close()

 End Sub

End Class

To test it out, we could put a breakpoint at the end and inspect aryBoard to see if it has

loaded the information.

Displaying The Game Board

We could display the game board by outputting it as text to a textbox or the console, but

that would be somewhat unsatisfying. Let’s write some code to draw the game board

graphically by repeatedly drawing images for each cell.

To do this, let’s add a picturebox to the form for each graphical element that could go

into a cell:

These images were just created from clipart and a paint program. Each one is 48 pixels

wide by 48 pixels tall. We are placing the pictureboxes on the form so they can serve as

source images to copy to our main game board. Since we don’t want the user to see

them, we can make each one invisible by setting its visible property to false.

Finally, let’s place a big picturebox called pboxBoard in the middle left of the form. This

picturebox will serve to display our game board. Here is a snapshot of the whole form:

To draw the little icon images into the game board, we can use the DrawImage function.

We put it inside the Paint event for the picturebox, just like you did when drawing lines

and circles. Here is a small example:

 Private Sub pboxBoard_Paint(. . .) Handles pboxBoard.Paint

 Dim g As Graphics = e.Graphics

 g.DrawImage(pboxAlien.Image, 100, 100)

 g.DrawImage(pboxWall.Image, 100, 200)

 End Sub

This draws the Alien image into pboxBoard with the upper left coordinate at 100,100. It

draws the wall image into pboxBoard with the upper left coordinate at 100,200:

To draw our entire game board we just need to make a loop that goes over every element

in the 2D array and then draw it in the corresponding location. Here is the whole code:

 Private Sub pboxBoard_Paint(. . .) Handles pboxBoard.Paint

 Dim g As Graphics = e.Graphics

 Dim x, y As Integer

 For y = 0 To 9

 For x = 0 To 9

 Select Case aryBoard(x, y)

 Case "A", "a"

 g.DrawImage(pboxAlien.Image, x * 48, y * 48)

 Case " "

 g.DrawImage(pboxBlank.Image, x * 48, y * 48)

 Case "X"

 g.DrawImage(pboxWall.Image, x * 48, y * 48)

 Case "G"

 g.DrawImage(pboxGem.Image, x * 48, y * 48)

 Case "F"

 g.DrawImage(pboxFinalDest.Image, x *48, y * 48)

 Case "P"

 g.DrawImage(pboxGemDest.Image, x * 48, y * 48)

 End Select

 Next

 Next

 End Sub

The result looks like this when the program is run:

If we ever change the game board we can force the display to refresh by calling

pboxBoard.Invalidate(). For example, the following code would “move” the

alien down one cell by putting a blank in the old location (1,1) and putting the alien in

(1,2):

 Private Sub Button1_Click(. . .) Handles Button1.Click

 aryBoard(1, 1) = " "

 aryBoard(1, 2) = "A"

 pboxBoard.Invalidate()

 End Sub

Moving The Player

To move the player (i.e. the Alien) around on the screen, first the computer needs to

know what the coordinates are for the cell it is in. Here is a subroutine that searches

through the array until it finds the “A” and then it returns the X and Y location as ByRef

parameters.

 Public Sub FindAlien(ByRef xCoord As Integer, _

 ByRef yCoord As Integer)

 Dim x, y As Integer

 For y = 0 To 9

 For x = 0 To 9

 If aryBoard(x, y) = "A" Then

 xCoord = x

 yCoord = y

 Return

 End If

 Next

 Next

 End Sub

We would use this subroutine with a call like:

 FindAlien(intX, intY)

After the call, intX will be set to the X coordinate of the alien and intY will be set to the

Y coordinate.

To move the alien let’s add two new class level variables to track the alien’s cell

coordinates and then initialize them in the form load event using our subroutine:

Public Class frmSokoban

 Dim aryBoard(9, 9) As String ' Game board

 Dim intCurrentX, intCurrentY As Integer

 Private Sub frmSokoban_Load(. . .) Handles MyBase.Load

 ' Previous code to load in level0.txt

 ...

 FindAlien(intCurrentX, intCurrentY)

 End Sub
…

Now that we have the alien’s location we can try to move it. Add four buttons that

correspond to the directions we might want to move (no diagonal moves allowed).

We need to determine what cell the player is trying to move to. We’ll use the variables

intTargetX and intTargetY to depict the target:

If the cell that the player is trying to move to is BLANK then allow the move by erasing

the "A" from aryBoard at the old location, put an "A" in the new location, update the

intCurrentX and intCurrentY variables, and then redraw the board. Here is code for

clicking on the RIGHT button:

 Private Sub btnRight_Click(. . .) Handles btnRight.Click

 Dim intTargetX, intTargetY As Integer

 intTargetX = intCurrentX + 1 ' Right is +1 in the X

 intTargetY = intCurrentY

 If aryBoard(intTargetX, intTargetY) = " " Then

 ' Erase player from current location

 aryBoard(intCurrentX, intCurrentY) = " "

 ' Put in new location

 intCurrentY = intTargetY

 intCurrentX = intTargetX

 aryBoard(intCurrentX, intCurrentY) = "A"

 ' Redraw

 pboxBoard.Invalidate()

 End If

 End Sub

This works but it won’t allow us to walk over the empty final destination cells, only

blank cells. We should be able to walk over the empty final destination cells. If we

walked over a empty final destination cell (letter “F”) cell, we can replace this with a

lowercase “a” to indicate the player is over one. Then when the player moves off we

should replace the cell with a “F” again.

 Private Sub btnRight_Click(. . .) Handles btnRight.Click

 Dim intTargetX, intTargetY As Integer

 intTargetX = intCurrentX + 1 ' Right is +1 in the X

 intTargetY = intCurrentY

 If aryBoard(intTargetX, intTargetY) = " " Then

 ' Erase player from current location, consider if

 ' was over a final destination

 If aryBoard(intCurrentX, intCurrentY) = "a" Then

 aryBoard(intCurrentX, intCurrentY) = "F"

 Else

 aryBoard(intCurrentX, intCurrentY) = " "

 End If

 ' Put in new location

 intCurrentY = intTargetY

 intCurrentX = intTargetX

 aryBoard(intCurrentX, intCurrentY) = "A"

 ' Redraw

 pboxBoard.Invalidate()

 ElseIf aryBoard(intTargetX, intTargetY) = "F" Then

 aryBoard(intCurrentX, intCurrentY) = " "

 intCurrentY = intTargetY

 intCurrentX = intTargetX

 ' Lower case "a" is the alien over a final destination

 aryBoard(intCurrentX, intCurrentY) = "a"

 pboxBoard.Invalidate()

 End If

 End Sub

If we repeat this for every button click you might notice the code is identical except for

the first three lines that set the values of X and Y. This makes the code a prime subject

for a subroutine. Let’s make a subroutine called MoveAlien to do the move, and the

button clicks just set up the target:

 Private Sub btnUp_Click(. . .) Handles btnUp.Click

 Dim intTargetX, intTargetY As Integer

 intTargetX = intCurrentX

 intTargetY = intCurrentY - 1 ' Trying to move UP so -1 in Y

 MoveAlien(intTargetX, intTargetY)

 End Sub

 Private Sub btnRight_Click(. . .) Handles btnRight.Click

 Dim intTargetX, intTargetY As Integer

 intTargetX = intCurrentX + 1 ' Right is +1 in the X

 intTargetY = intCurrentY

 MoveAlien(intTargetX, intTargetY)

 End Sub

 Private Sub btnLeft_Click(. . .) Handles btnLeft.Click

 Dim intTargetX, intTargetY As Integer

 intTargetX = intCurrentX - 1 ' Left is +1 in the X

 intTargetY = intCurrentY

 MoveAlien(intTargetX, intTargetY)

 End Sub

 Private Sub btnDown_Click(. . .) Handles btnDown.Click

 Dim intTargetX, intTargetY As Integer

 intTargetX = intCurrentX

 intTargetY = intCurrentY + 1 ' Move positive for Y

 MoveAlien(intTargetX, intTargetY)

 End Sub

 Public Sub MoveAlien(ByVal intTargetX As Integer, _

 ByVal intTargetY As Integer)

 If aryBoard(intTargetX, intTargetY) = " " Then

 ' Erase player from current location, consider if

 ' was over a final destination

 If aryBoard(intCurrentX, intCurrentY) = "a" Then

 aryBoard(intCurrentX, intCurrentY) = "F"

 Else

 aryBoard(intCurrentX, intCurrentY) = " "

 End If

 ' Put in new location

 intCurrentY = intTargetY

 intCurrentX = intTargetX

 aryBoard(intCurrentX, intCurrentY) = "A"

 ' Redraw

 pboxBoard.Invalidate()

 ElseIf aryBoard(intTargetX, intTargetY) = "F" Then

 If aryBoard(intCurrentX, intCurrentY) = "a" Then

 aryBoard(intCurrentX, intCurrentY) = "F"

 Else

 aryBoard(intCurrentX, intCurrentY) = " "

 End If

 intCurrentY = intTargetY

 intCurrentX = intTargetX

 ' Lower case "a" is the alien over a final destination

 aryBoard(intCurrentX, intCurrentY) = "a"

 pboxBoard.Invalidate()

 End If

 End Sub

This allows the alien to move on blank spaces and over final destinations.

Pushing Gems

Next we need to be able to push the gems. This entails another subroutine similar to the

“MoveAlien” subroutine above, except it should be for moving a gem.

Let’s check for this scenario in the button click events. I decided to check for it here

because we need to know what is two cells away from the player in the direction we are

trying to push a gem, and that information is not available in the MoveAlien subroutine

as it is written.

Here are the variables that describe the cells of interest:

Here is a modified version of clicking on the Right button:

 Private Sub btnRight_Click(. . .) Handles btnRight.Click

 Dim intTargetX, intTargetY As Integer

 intTargetX = intCurrentX + 1 ' Right is +1 in the X

 intTargetY = intCurrentY

 If aryBoard(intTargetX, intTargetY) = "G" Or _

 aryBoard(intTargetX, intTargetY) = "P" Then

 ' Get coordinates of where we want to push a gem

 Dim intGemTargetX, intGemTargetY As Integer

 intGemTargetX = intTargetX + 1

 intGemTargetY = intTargetY

 ' Send in as arguments the gem's coordinates and

 ' coordinates of where the gem would be pushed

 PushGem(intTargetX,intTargetY,intGemTargetX,intGemTargetY)

 Else

 MoveAlien(intTargetX, intTargetY)

 End If

 End Sub

We would place similar code in btnLeft_Click (except intGemTargetX = intTargetX -1)

and so forth, updating the gem target for each direction. In the PushGem subroutine we

need to check to see if the gem target is empty (either blank or a final destination). If so,

move the gem there and move the player to where the gem was.

Here is the code for pushing a gem. It is somewhat messy because of checking for the

two possible conditions that a gem or the alien might be over. Either might be standing

over a final destination or a blank.

 Public Sub PushGem(ByVal intTargetX As Integer,

 ByVal intTargetY As Integer, _

 ByVal intGemTargetX As Integer, _

 ByVal intGemTargetY As Integer)

 ' If gem target is blank or a final destination allow push

 If aryBoard(intGemTargetX, intGemTargetY) = " " Or _

 aryBoard(intGemTargetX, intGemTargetY) = "F" Then

 ' Move gem to target

 If aryBoard(intGemTargetX, intGemTargetY) = " " Then

 aryBoard(intGemTargetX, intGemTargetY) = "G"

 Else

 aryBoard(intGemTargetX, intGemTargetY) = "P"

 End If

 ' Move alien to where the gem was

 If aryBoard(intTargetX, intTargetY) = "G" Then

 ' Alien over blank

 aryBoard(intTargetX, intTargetY) = "A"

 ElseIf aryBoard(intTargetX, intTargetY) = "P" Then

 ' Alien over final destination

 aryBoard(intTargetX, intTargetY) = "a"

 End If

 ' Erase what the alien was over

 If aryBoard(intCurrentX, intCurrentY) = "A" Then

 aryBoard(intCurrentX, intCurrentY) = " "

 ElseIf aryBoard(intCurrentX, intCurrentY) = "a" Then

 aryBoard(intCurrentX, intCurrentY) = "F"

 End If

 ' Update position and redraw

 intCurrentX = intTargetX

 intCurrentY = intTargetY

 pboxBoard.Invalidate()

 End If

 End Sub

Checking for a Win

We’re not quite done yet. The code lets us play but doesn’t tell us when we’ve finished

the level. One way to check for a win is after every move, scan through the entire board.

If there are no “G”s then the level is complete. A “G” is a gem that is not on a final

destination.

 Public Function LevelComplete() As Boolean

 Dim x, y As Integer

 For y = 0 To 9

 For x = 0 To 9

 If aryBoard(x, y) = "G" Then

 ' Exit if we find any gems

 Return False

 End If

 Next

 Next

 ' If we get here, we found no gems over blanks.

 ' So we must have won, return true

 Return True

 End Function

We can call this at the end of PushGem, since the only time we would win is when a gem

was just pushed:

 Public Sub PushGem(ByVal intTargetX As Integer, _

 ByVal intTargetY As Integer, _

 ByVal intGemTargetX As Integer, _

 ByVal intGemTargetY As Integer)

 ' If gem target is blank or a final destination allow push

 If aryBoard(intGemTargetX, intGemTargetY) = " " Or _

 aryBoard(intGemTargetX, intGemTargetY) = "F" Then

 . . .

 If LevelComplete() Then

 MessageBox.Show("You did it! You finished the level!")

 End If

 End If

 End Sub

More Sokoban

There are a lot of other features that should be added; a “reset” button should be

available to reset the board in case the player gets stuck. Multiple levels could also be

added; after one level is complete the next, harder level would load. A score could be

displayed that shows the number of moves made. High scores could be kept and saved in

a text file.

These additions are left as an exercise to the reader, if desired ☺ These additions would

also make a suitable homework #5 assignment.

