
1

Sub and Function Procedures

Chapter 7

Introduction
• So far, most of the code has been inside a single method for an event

– Fine for small programs, but inconvenient for large ones
– Much better to divide program into manageable pieces

• Benefits of modularization
– Avoids repeat code (reuse a function many times in one program)
– Promotes software reuse (reuse a function in another program)
– Promotes good design practices (Specify function interfaces)
– Promotes debugging (can test an individual module to make sure it works

properly)
• General procedures: procedures not associated with specific events

– Sub
– Function
– Property

2

Sub Procedures

• The purpose of a Sub procedure is to operate and
manipulate data within some specific context

• A general procedure is invoked by using its defined
name
– For example: Message()
– You’ve been using Sub Procedures all the time:

• E.g. g.DrawLine(Pens.Blue, 10, 10, 40, 40)

Creating a General Sub
Procedure

• Ensure that the Code window is activated by:
– Double clicking on a Form, or
– Pressing the F7 function key, or
– Selecting the Code item from the View menu

• Type a procedure declaration into the Code window
– Public Sub procedure-name()

• Visual Basic will create the procedure stub
• Type the required code

3

Exchanging Data with a General
Procedure

• Syntax for calling a Sub procedure into action:
procedure-name(argument list)

Figure 7-5: Calling a Sub Procedure

Exchanging Data with a General
Procedure (continued)

• A general Sub procedure declaration must include:
– Keyword Sub
– Name of the general procedure

• The rules for naming Sub procedures are the same as the rules for
naming variables

– Names of any parameters

• Parameter: the procedure’s declaration of what data it
will accept

• Argument: the data sent by the calling function
• Individual data types of each argument and its

corresponding parameter must be the same

4

Exchanging Data with a General
Procedure (continued)

Figure 7-7: The Structure of a General Sub Procedure

Public Sub ExplainPurpose()

Example
lstResult.Items.Clear()

ExplainPurpose()
lstResult.Items.Add("")

lstResult.Items.Add("This program displays a sentence")

lstResult.Items.Add("identifying two numbers and their sum.")

End Sub

5

Code Re-Use
• If in another place in the code you wanted to explain the purpose, you can

just invoke the subroutine:

• Avoids duplicate the same code in many places
• If you ever want to change the code, only one place needs to be changed

Public Sub OtherCode(…)
ExplainPurpose()
‘ Presumably other code here

End Sub

Passing Parameters
• You can send items to a Sub procedure

Sum(2, 3)

Public Sub Sum(num1 As Double, num2 As Double)
Console.WriteLine(num1+num2)

End Sub

• In the Sum Sub procedure, 2 will be stored in num1 and 3 will be stored in
num2 and the sum will be output to the console

6

Passing Variables

• We can pass variables too:
x = 2
y = 3
Sum(x,y) ‘ Same as Sum(2, 3)

• The variables are evaluated prior to calling the subroutine, and
their values are accessible via the corresponding variable
names in the sub

Population Density Sub

• Subroutine to calculate population density:

Public Sub CalculateDensity(ByVal state As String, _
ByVal pop As Double, _
ByVal area As Double)

Dim rawDensity, density As Double
rawDensity = pop / area
density = Math.Round(rawDensity, 1) ' Round to 1 decimal place
Console.Write("The density of " & state & " is " & density)
Console.WriteLine(" people per square mile.")

End Sub

7

Parameters and Arguments
CalculateDensity("Alaska", 627000, 591000)

Arguments – what you send to
a Sub procedure

Parameters – place holders for
what the sub procedure

receives

Public Sub CalculateDensity(ByVal state As String, _

ByVal pop As Double, _

ByVal area As Double)

If ByVal left off,
VB.NET will add it

Code Reuse

• By making CalculateDensity a procedure subroutine,
we can reuse it, e.g.:

CalculateDensity(“Hawaii”, 1212000, 6471)

8

Sub Procedures Calling Other
Sub Procedures

Private Sub btnDisplay_Click(...)
Handles btnDisplay.Click

FirstPart()
Console.WriteLine(“a”)

End Sub

Sub FirstPart()
SecondPart()
Console.WriteLine(“b”)

End Sub

Sub SecondPart()
Console.WriteLine(“c”)

End Sub

Output:
c
b
a

In Class Exercise
• Write a Sub procedure that takes as arguments an animal and sound for the

“Old McDonald Had A Farm” song and outputs the verse, e.g.:

– Old McDonald had a farm, E-I-E-I-O.
– And on his farm he had a cow, E-I-E-I-O.
– With a moo moo here, and a moo moo there,
– Here a moo, there a moo, everywhere a moo moo.
– Old McDonald had a farm, E-I-E-I-O

• Complete the program in the Form Load event to output the verses for a
cow, chicken, and lamb.

9

Passing by Value

• ByVal stands for “By Value”
– Default mode, VB.NET adds this for you if you leave it off

• ByVal parameters retain their original value after Sub
procedure terminates
– Can think of this as a copy of the variable is sent in

Public Sub ValSub(ByRef x As Integer)

Dim x As Integer = 3
ValSub(x)

Memory

X 3

X 3

ByVal Example

Public Sub CallingSub()
Dim y As Integer
y = 5
Console.WriteLine("y is " & y)
ValSub(y)
Console.WriteLine("y is " & y)

End Sub

Public Sub ValSub(ByVal x As Integer)
x = 10
Console.WriteLine(" x is " & x)

End Sub

Output?

10

ByVal Example – Y to X

Public Sub CallingSub()
Dim x As Integer
x = 5
Console.WriteLine(“x is " & x)
ValSub(x)
Console.WriteLine(“x is " & x)

End Sub

Public Sub ValSub(ByVal x As Integer)
x = 10
Console.WriteLine("x is " & x)

End Sub

Output?

Passing by Reference
• ByRef stands for "By Reference“

– You can think of this as a reference, or pointer, to the original variable
is sent to the subroutine

• ByRef parameters can be changed by the Sub procedure and
retain the new value after the Sub procedure terminates

Public Sub RefSub(ByRef x As Integer)

Dim x As Integer = 3
RefSub(x)

Memory

X 3

X

11

ByRef Example

Public Sub CallingSub()
Dim y As Integer
y = 5
Console.WriteLine("y is " & y)
RefSub(y)
Console.WriteLine("y is " & y)

End Sub

Public Sub RefSub(ByRef x As Integer)
x = 10
Console.WriteLine(" x is " & x)

End Sub

Output?

ByVal Example – Y to X

Sub CallingSub()
Dim x As Integer
x = 5
Console.WriteLine(“x is " & x)
RefSub(x)
Console.WriteLine(“x is " & x)

End Sub

Sub RefSub(ByRef x As Integer)
x = 10
Console.WriteLine("x is " & x)

End Sub

Any
Difference in

Output?

12

Local Variables

• Variables declared inside a Sub procedure with a Dim
statement

• Parameters are also considered local variables; their
values are gone when the subroutine exits (unless
parameters were passed ByRef)

In-Class Exercise

• Write a subroutine that swaps two integer variables;
e.g. Swap(x,y) results in exchanging the values in X
and Y

13

Function Procedures

• A function directly returns a single value to its calling
procedure

• Types of functions:
– Intrinsic
– User-defined

Function Procedures (continued)

Figure 7-13: A Function Directly Returns a Single Value

14

Function Procedures (continued)

Figure 7-14: The Structure of a Function Procedure

Calling a Function Procedure

• To call a function procedure:
– Give the function’s name
– Pass any data to it in the parentheses following the function

name

• Arguments of the called function are the items
enclosed within the parentheses in a calling statement

15

Calling a Function Procedure
(continued)

Figure 7-15: Calling and Passing Data to a Function

Sample

Private Sub btnDetermine_Click(...)

Handles btnDetermine.Click

Dim name As String

name = txtFullName.Text

txtFirstname.Text = FirstName(name)

End Sub

Public Function FirstName(ByVal name As String) As String

Dim firstSpace As Integer

firstSpace = name.IndexOf(" ")

Return name.Substring(0, firstSpace)

End Function

Function
call

Return
statement

16

Having Several Parameters
Private Sub btnCalculate_Click(...)

Handles btnCalculate.Click
Dim a, b As Double
a = CDbl(txtSideOne.Text)
b = CDbl(txtSideTwo.Text)
txtHyp.Text = CStr(Hypotenuse(a, b))

End Sub

Public Function Hypotenuse(ByVal a As Double, _
ByVal b As Double) As Double

Return Math.Sqrt(a ^ 2 + b ^ 2)
End Function

User-Defined Functions Having
No Parameters

Private Sub btnDisplay_Click(...) _
Handles btnDisplay.Click

txtBox.Text = Saying()
End Sub

Public Function Saying() As String
Return InputBox("What is your" _

& " favorite saying?")
End Function

17

Comparing Function Procedures
with Sub Procedures

• Subs are accessed using a call statement
• Functions are called where you would expect to find

a literal or expression
• For example:

– Result = functionCall
– Console.WriteLine (functionCall)

Functions vs. Procedures

• Both can perform similar tasks
• Both can call other subs and functions
• Use a function when you want to return one and only

one value
– A function or sub can also be declared with ByRef

arguments to return multiple values back through the
argument list

18

Collapsing a Procedure with a
Region Directive

• A procedure can be collapsed behind a captioned rectangle
• This task is carried out with a Region directive.
• To specify a region, precede the code to be collapsed with a line

of the form
#Region "Text to be displayed in the box."

• and follow the code with the line
#End Region

Region Directives

19

Collapsed Regions

In-Class Exercise
• Write a function named RollDice that simulates rolling two

six-sided dice and returns the sum of the roll
– Print out several rolls to see if it is working

• Modify your function so it rolls N dice, each with M sides and
returns the sum

20

Recursion

• Self-referential or recursive procedures: procedures
that call themselves

• Direct recursion: a procedure invokes itself
• Indirect or mutual recursion: a procedure invokes a

second procedure, which in turn invokes the first
procedure

Mathematical Recursion
• A solution to a problem can be stated in terms of “simple”

versions of itself
• Some problems can be solved using an algebraic formula that

shows recursion explicitly
• For example: finding the factorial of a number n, denoted as

n!, where n is a positive integer
1! = 1
n! = n * (n - 1)! for n > 1

Public Function Factorial(ByVal num As Integer) As Integer
If num = 1 Then

Return 1
Else

Return num * (Factorial(num - 1))
End If

End Function

21

Mathematical Recursion
(continued)

• General considerations in constructing a recursive
algorithm:
– What is the first case?
– How is the nth case related to the (n - 1) case?

• A repetitive solution is preferable if:
– A problem solution can be expressed repetitively or

recursively with equal ease

• A recursive solution is preferable if:
– The program is easier to visualize using a recursive

algorithm than a repetitive one
– Recursion provides a much simpler solution

