
10/26/2009

1

Theory of Computation

Theory of Computation

• What is possible to compute?

• We can prove that there are some problems

computers cannot solve

• There are some problems computers can

theoretically solve, but are intractable (would

take too long to compute to be practical)

10/26/2009

2

Automata Theory

• The study of abstract computing devices, or “machines.”

• Days before digital computers

– What is possible to compute with an abstract machine

– Seminal work by Alan Turing

• Why is this useful?

– Direct application to creating compilers, programming languages,
designing applications.

– Formal framework to analyze new types of computing devices, e.g.
biocomputers or quantum computers.

• Covers simple to powerful computing “devices”

– Finite state automaton

– Grammars

– Turing Machine

Finite State Automata

• Automata – plural of “automaton”

– i.e. a robot

• Finite state automata then a “robot composed of a finite
number of states”

– Informally, a finite list of states with transitions between the states

• Useful to model hardware, software, algorithms, processes

– Software to design and verify circuit behavior

– Lexical analyzer of a typical compiler

– Parser for natural language processing

– An efficient scanner for patterns in large bodies of text (e.g. text
search on the web)

– Verification of protocols (e.g. communications, security).

10/26/2009

3

On-Off Switch Automaton

• Here is perhaps one of the
simplest finite automaton, an
on-off switch

• States are represented by
circles. Edges or arcs between
states indicate transitions or
inputs to the system. The
“start” edge indicates which
state we start in.

• Sometimes it is necessary to
indicate a “final” or “accepting”
state. We’ll do this by drawing
the state in double circles

On OffStart

Push

Push

Gas Furnace Example

• The R terminal is the hot wire and completes a

circuit. When R and G are connected, the blower

turns on. When R and W are connected, the

burner comes on. Any other state where R is not

connected to either G or W results in no action.

R

W

G

To

Thermostat

Furnace

10/26/2009

4

Furnace Automaton
• Could be implemented in a thermostat

Bl On

Br On

Bl Off

Br Off
Bl Off

Br On

Bl On

Br Off

Start

R+W

R-W

R+W

R-W

R-G R+G R-G R+G

Furnace Notes

• We left out connections that have no effect

– E.g. connecting W and G

• Once the logic in the automata has been formalized, the
model can be used to construct an actual circuit to control the
furnace (i.e., a thermostat).

• The model can also help to identify states that may be
dangerous or problematic.

– E.g. state with Burner On and Blower Off could overhead the furnace

– Want to avoid this state or add some additional states to prevent
failure from occurring (e.g., a timeout or failsafe)

10/26/2009

5

Often Used for Video Game AI

• Computer AI player for a sentry guarding two

locations

March to

Location X
Attack Player

March to

Location Y

At Location Y?

At Location X?

Player dead?

Player in sight?

Player in sight?

Example

• Design a finite state automaton that

determines if some input sequence of bits has

an odd number of 1’s

10/26/2009

6

Grammars

• Grammars provide a different “view” of computing
than automata
– Describes the “Language” of what is possible to generate

– Often grammars are identical to automata

• Example: Odd finite state automaton
– Could try to describe a grammar that generates all

possible sequences of 1’s and 0’s with an odd
number of 1’s

Grammar Example

• Just like English, languages can be described by grammars. For example,
below is a very simple grammar:

S� Noun Verb-Phrase

Verb-Phrase � Verb Noun

Noun � { Kenrick, cows }

Verb � { loves, eats }

• Using this simple grammar our language allows the following sentences.
They are “in” the Language defined by the grammar:

Kenrick loves Kenrick

Kenrick loves cows

Kenrick eats Kenrick

Kenrick eats cows

Cows loves Kenrick

Cows loves cows

Cows eats Kenrick

Cows eats cows

• Some sentences not in the grammar:

Kenrick loves cows and kenrick.

Cows eats love cows.

Kenrick loves chocolate.

10/26/2009

7

Grammars and Languages

• The “sentences” that a grammar generates can describe a
particular problem or solution to a problem

• Grammar provides a “cut” through the space of possible
sentences – can be crude to sophisticated cuts

• Grammars can represent languages that deterministic
finite automaton cannot

Kenrick loves Kenrick

Kenrick loves cows

Kenrick loves Kenrick cows

cows eat eat loves

In

Out

Grammar Example

• What can the following grammar generate?

S � 0

S � 0S1

• What can the following grammar generate?

S � 1

S � Z1ZSZ1Z

Z � empty

Z � 0

Z � 0Z

10/26/2009

8

Taxonomy of Complexity

Turing Machines

Linear bounded

automata

Pushdown

automata

Finite state

automata

Phrase Structure

Context-Sensitive

Context-Free

Regular

Machines Grammars/Languages

Uncomputable

Crude

Complex

Turing Machine

• Finite state automatons and grammars have
limitations for even simple tasks, too
restrictive as general purpose computers

• Enter the Turing Machine

– More powerful than either of the above

– Essentially a finite state automaton but with
unlimited memory

– Although theoretical, can do everything a general
purpose computer of today can do

• If a TM can’t solve it, neither can a computer

10/26/2009

9

Turing Machines

• TM’s described in 1936

– Well before the days of modern computers but remains a

popular model for what is possible to compute on today’s

systems

– Advances in computing still fall under the TM model, so

even if they may run faster, they are still subject to the

same limitations

• A TM consists of a finite control (i.e. a finite state

automaton) that is connected to an infinite tape.

Turing Machine

• The tape consists of cells where each cell holds a symbol from the tape
alphabet. Initially the input consists of a finite-length string of symbols
and is placed on the tape. To the left of the input and to the right of the
input, extending to infinity, are placed blanks. The tape head is initially
positioned at the leftmost cell holding the input.

Finite control

… B B X1 X2 … Xi Xn B B …

10/26/2009

10

Turing Machine Details

• In one move the TM will:
–Change state, which may be the same as

the current state

–Write a tape symbol in the current cell,
which may be the same as the current
symbol

–Move the tape head left or right one cell

– The special states for rejecting and
accepting take effect immediately

A Turing machine for incrementing a

value

0

1

*

10/26/2009

11

Equivalence of TM’s and Computers

• In one sense, a real computer has a finite amount of
memory, and thus is weaker than a TM.

• But, we can postulate an infinite supply of tapes,
disks, or some peripheral storage device to simulate
an infinite TM tape. Additionally, we can assume
there is a human operator to mount disks, keep them
stacked neatly on the sides of the computer, etc.

• Need to show both directions, a TM can simulate a
computer and that a computer can simulate a TM

Computer Simulate a TM

• This direction is fairly easy - Given a computer with a

modern programming language, certainly, we can

write a computer program that emulates the finite

control of the TM.

• The only issue remains the infinite tape. Our

program must map cells in the tape to storage

locations in a disk. When the disk becomes full, we

must be able to map to a different disk in the stack of

disks mounted by the human operator.

10/26/2009

12

TM Simulate a Computer

• In this exercise the simulation is performed at the level of
stored instructions and accessing words of main memory.

– TM has one tape that holds all the used memory locations and
their contents.

– Other TM tapes hold the program counter, memory address,
computer input file, and scratch data.

– The computer’s instruction cycle is simulated by:

1. Find the word indicated by the program counter on the memory
tape.

2. Examine the instruction code (a finite set of options), and get the
contents of any memory words mentioned in the instruction, using
the scratch tape.

3. Perform the instruction, changing any words' values as needed,
and adding new address-value pairs to the memory tape, if needed.

TM/Computer Equivalence

• Anything a computer can do, a TM can do, and vice versa

• TM is much slower than the computer, though
– But the difference in speed is polynomial

– Each step done on the computer can be completed in O(n2) steps on
the TM

• While slow, this is key information if we wish to make an
analogy to modern computers. Anything that we can prove
using Turing machines translates to modern computers with
a polynomial time transformation.

• Whenever we talk about defining algorithms to solve
problems, we can equivalently talk about how to construct a
TM to solve the problem. If a TM cannot be built to solve a
particular problem, then it means our modern computer
cannot solve the problem either.

10/26/2009

13

Church-Turing Thesis

• The functions that are computable by a Turing

machine are exactly the functions that can be

computed by any algorithmic means.

Universal Programming Language

A language with which a solution to any

computable function can be expressed

– Examples: “Bare Bones” and most popular

programming languages

10/26/2009

14

The Bare Bones Language

• Bare Bones is a simple, yet universal language.

• Statements

– clear name;

– incr name;

– decr name;

– while name not 0 do; � end;

A Bare Bones program for computing

X × Y

10/26/2009

15

A Bare Bones implementation of the

instruction “copy Today to Tomorrow”

The Halting Problem

• Given the encoded version of any program,

return 1 if the program is self-terminating, or

0 if the program is not.

• First thought: Run the program to see if it

halts or not. Problem?

10/26/2009

16

Halting Tester

H

Halting tester
P

Yes, halts

No, doesn’t halt

Halting Tester (2)

H

Halting tester
P

Yes, halts

No, doesn’t halt

Next we modify H to a new program H1 that acts like H, but when H

prints “Yes, halts”, H1 enters an infinite loop

H1

Infinite Loop

10/26/2009

17

Halting Tester (3)

• However, H1 cannot exist. If it did, what would H1(H1) do?

• That is, we give H1 as input to itself:

If H1 on the left halts, then H1 given H1 as input will enter an infinite loop and

not halt, in which case it should output that it doesn’t halt. But we just

supposed that H1 is supposed to halt.

The situation is paradoxical and we conclude that H1 cannot exist and this

problem is undecidable.

H

Halting tester
H1

Yes, halts

No, doesn’t halt

H1

Infinite Loop

The Halting program is unsolvable

10/26/2009

18

Complexity of Problems

• Time Complexity: The number of instruction
executions required
– Unless otherwise noted, “complexity” means “time

complexity.”

• Theta or Big-O notation
– A problem is in class Θ(f(n)) if it can be solved in some

number of steps proportional to f(n)
• A problem is in class Ο(f(n)) if it can be solved in some

number of steps proportional or less than f(n); i.e. f(n) is
an upper bound

– Examples
• Sequential search is Θ(n)
• Binary search is Θ(lg n)
• Insertion Sort is Ο(n2)

Graphs of the mathematical

expressions n, lg n, n lg n, and n2

10/26/2009

19

P versus NP

• Class P: All problems in any class Θ(f(n)), where f(n) is a
polynomial; problem can be solved in polynomial time

• Class NP: All problems that can be solved by a
nondeterministic algorithm in polynomial time

Nondeterministic algorithm = an algorithm described
by a Turing Machine that could be in multiple states at
the same time

Given a proposed solution to a problem, can verify if
the proposed solution is an actual solution in
polynomial time.

• Whether the class NP is bigger than class P is currently
unknown.

NP ⊇ P

• NP is obviously a superset of P

• But many problems appear to be in NP but

not in P

– E.g., consider a “sliding tile” puzzle

Solve in polynomial time? (e.g. function of # of tiles)

But given a proposed solution, easy to verify if it is correct in

polynomial time

10/26/2009

20

• 29 Node Traveling Salesperson

Problem

• 29! = 8.8 trillion billion billion

possible asymmetric routes.

• ASCI White, an IBM

supercomputer being used by

Lawrence Livermore National

Labs to model nuclear

explosions, is capable of 12

trillion operations per second

(TeraFLOPS) peak throughput

• Assuming symmetric routes,

ASCI White would take 11.7

billion years to exhaustively

search the solution space

The Big Question

• Is there anything in NP that is not in P?
• We know that P ⊆ NP
• But it is unknown if P = NP
• Most people believe that P ≠ NP due to the

existence of problems in NP that are in the class
NPC, or NP Complete

• The Clay Mathematics Institute has offered a
million dollar prize to anyone that can prove that
P=NP or that P≠NP

