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Theory of Computation

Theory of Computation

• What is possible to compute?

• We can prove that there are some problems 

computers cannot solve

• There are some problems computers can 

theoretically solve, but are intractable (would 

take too long to compute to be practical)
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Automata Theory

• The study of abstract computing devices, or “machines.”  

• Days before digital computers

– What is possible to compute with an abstract machine

– Seminal work by Alan Turing

• Why is this useful?   

– Direct application to creating compilers, programming languages, 
designing applications.  

– Formal framework to analyze new types of computing devices, e.g. 
biocomputers or quantum computers.  

• Covers simple to powerful computing “devices”

– Finite state automaton

– Grammars

– Turing Machine

Finite State Automata

• Automata – plural of “automaton”

– i.e. a robot

• Finite state automata then a “robot composed of a finite 
number of states”

– Informally, a finite list of states with transitions between the states

• Useful to model hardware, software, algorithms, processes

– Software to design and verify circuit behavior

– Lexical analyzer of a typical compiler

– Parser for natural language processing

– An efficient scanner for patterns in large bodies of text (e.g. text 
search on the web)

– Verification of protocols (e.g. communications, security).



10/26/2009

3

On-Off Switch Automaton

• Here is perhaps one of the 
simplest finite automaton, an 
on-off switch

• States are represented by 
circles. Edges or arcs between 
states indicate transitions or 
inputs to the system.  The 
“start” edge indicates which 
state we start in. 

• Sometimes it is necessary to 
indicate a “final” or “accepting” 
state.  We’ll do this by drawing 
the state in double circles

 

On OffStart

Push

Push

Gas Furnace Example

• The R terminal is the hot wire and completes a 

circuit.  When R and G are connected, the blower 

turns on.  When R and W are connected, the 

burner comes on.  Any other state where R is not 

connected to either G or W results in no action. 

 

R

W

G

To

Thermostat

Furnace
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Furnace Automaton
• Could be implemented in a thermostat

Bl On

Br On

Bl Off

Br Off
Bl Off

Br On

Bl On

Br Off

Start

R+W

R-W

R+W

R-W

R-G R+G R-G R+G

Furnace Notes

• We left out connections that have no effect 

– E.g. connecting W and G

• Once the logic in the automata has been formalized, the 
model can be used to construct an actual circuit to control the 
furnace (i.e., a thermostat).  

• The model can also help to identify states that may be 
dangerous or problematic.  

– E.g. state with Burner On and Blower Off could overhead the furnace

– Want to avoid this state or add some additional states to prevent 
failure from occurring (e.g., a timeout or failsafe )
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Often Used for Video Game AI

• Computer AI player for a sentry guarding two 

locations

March to 

Location X
Attack Player

March to 

Location Y

At Location Y?

At Location X?

Player dead?

Player in sight?

Player in sight?

Example

• Design a finite state automaton that 

determines if some input sequence of bits has 

an odd number of 1’s
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Grammars

• Grammars provide a different “view” of computing 
than automata
– Describes the “Language” of what is possible to generate

– Often grammars are identical to automata

• Example: Odd finite state automaton
– Could try to describe a grammar that generates all 

possible sequences of 1’s and 0’s with an odd 
number of 1’s

Grammar Example

• Just like English, languages can be described by grammars.  For example, 
below is a very simple grammar:

S� Noun Verb-Phrase

Verb-Phrase � Verb Noun

Noun � { Kenrick, cows }

Verb � { loves, eats }

• Using this simple grammar our language allows the following sentences.  
They are “in” the Language defined by the grammar:

Kenrick loves Kenrick

Kenrick loves cows

Kenrick eats Kenrick

Kenrick eats cows

Cows loves Kenrick

Cows loves cows

Cows eats Kenrick

Cows eats cows

• Some sentences not in the grammar:

Kenrick loves cows and kenrick.

Cows eats love cows.

Kenrick loves chocolate.
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Grammars and Languages

• The “sentences” that a grammar generates can describe a 
particular problem or solution to a problem

• Grammar provides a “cut” through the space of possible 
sentences – can be crude to sophisticated cuts

• Grammars can represent languages that deterministic 
finite automaton cannot

Kenrick loves Kenrick

Kenrick loves cows

Kenrick loves Kenrick cows

cows eat eat loves

In

Out

Grammar Example

• What can the following grammar generate?

S � 0

S � 0S1

• What can the following grammar generate?

S � 1

S � Z1ZSZ1Z       

Z � empty

Z � 0

Z � 0Z
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Taxonomy of Complexity

Turing Machines

Linear bounded

automata

Pushdown

automata

Finite state

automata

Phrase Structure

Context-Sensitive

Context-Free

Regular

Machines          Grammars/Languages

Uncomputable

Crude

Complex

Turing Machine

• Finite state automatons and grammars have 
limitations for even simple tasks, too 
restrictive as general purpose computers

• Enter the Turing Machine

– More powerful than either of the above

– Essentially a finite state automaton but with 
unlimited memory

– Although theoretical, can do everything a general 
purpose computer of today can do

• If a TM can’t solve it, neither can a computer
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Turing Machines

• TM’s described in 1936

– Well before the days of modern computers but remains a 

popular model for what is possible to compute on today’s 

systems

– Advances in computing still fall under the TM model, so 

even if they may run faster, they are still subject to the 

same limitations

• A TM consists of a finite control (i.e. a finite state 

automaton) that is connected to an infinite tape.

Turing Machine

• The tape consists of cells where each cell holds a symbol from the tape 
alphabet.  Initially the input consists of a finite-length string of symbols 
and is placed on the tape.  To the left of the input and to the right of the 
input, extending to infinity, are placed blanks.   The tape head is initially 
positioned at the leftmost cell holding the input.

Finite control

…   B   B X1 X2 …           Xi Xn B      B …
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Turing Machine Details

• In one move the TM will:
–Change state, which may be the same as 

the current state

–Write a tape symbol in the current cell, 
which may be the same as the current 
symbol

–Move the tape head left or right one cell

– The special states for rejecting and 
accepting take effect immediately

A Turing machine for incrementing a 

value

0

1

*
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Equivalence of TM’s and Computers

• In one sense, a real computer has a finite amount of 
memory, and thus is weaker than a TM.

• But, we can postulate an infinite supply of tapes, 
disks, or some peripheral storage device to simulate 
an infinite TM tape.  Additionally, we can assume 
there is a human operator to mount disks, keep them 
stacked neatly on the sides of the computer, etc.

• Need to show both directions, a TM can simulate a 
computer and that a computer can simulate a TM

Computer Simulate a TM

• This direction is fairly easy - Given a computer with a 

modern programming language, certainly, we can 

write a computer program that emulates the finite 

control of the TM.  

• The only issue remains the infinite tape.  Our 

program must map cells in the tape to storage 

locations in a disk.  When the disk becomes full, we 

must be able to map to a different disk in the stack of 

disks mounted by the human operator.
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TM Simulate a Computer

• In this exercise the simulation is performed at the level of 
stored instructions and accessing words of main memory.

– TM has one tape that holds all the used memory locations and 
their contents.

– Other TM tapes hold the program counter, memory address, 
computer input file, and scratch data.

– The computer’s instruction cycle is simulated by:

1. Find the word indicated by the program counter on the memory 
tape.

2. Examine the instruction code (a finite set of options), and get the 
contents of any memory words mentioned in the instruction, using 
the scratch tape. 

3. Perform the instruction, changing any words' values as needed, 
and adding new address-value pairs to the memory tape, if needed.

TM/Computer Equivalence

• Anything a computer can do, a TM can do, and vice versa

• TM is much slower than the computer, though
– But the difference in speed is polynomial

– Each step done on the computer can be completed in O(n2) steps on 
the TM

• While slow, this is key information if we wish to make an 
analogy to modern computers. Anything that we can prove 
using Turing machines translates to modern computers with 
a polynomial time transformation. 

• Whenever we talk about defining algorithms to solve 
problems, we can equivalently talk about how to construct a 
TM to solve the problem.  If a TM cannot be built to solve a 
particular problem, then it means our modern computer 
cannot solve the problem either.
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Church-Turing Thesis

• The functions that are computable by a Turing 

machine are exactly the functions that can be 

computed by any algorithmic means.

Universal Programming Language

A language with which a solution to any 

computable function can be expressed

– Examples: “Bare Bones” and most popular 

programming languages
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The Bare Bones Language

• Bare Bones is a simple, yet universal language.

• Statements

– clear name;

– incr name;

– decr name;

– while name not 0 do; � end;

A Bare Bones program for computing 

X × Y
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A Bare Bones implementation of the 

instruction “copy Today to Tomorrow”

The Halting Problem

• Given the encoded version of any program, 

return 1 if the program is self-terminating, or 

0 if the program is not.

• First thought:  Run the program to see if it 

halts or not.   Problem?
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Halting Tester

H

Halting tester
P

Yes, halts

No, doesn’t halt

Halting Tester (2)

H

Halting tester
P

Yes, halts

No, doesn’t halt

Next we modify H to a new program H1 that acts like H, but when H 

prints “Yes, halts”, H1 enters an infinite loop

H1 

Infinite Loop
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Halting Tester (3)

• However, H1 cannot exist. If it did, what would H1(H1 ) do?

• That is, we give H1 as input to itself:

If H1 on the left halts, then H1 given H1 as input will enter an infinite loop and 

not halt, in which case it should output that it doesn’t halt.  But we just 

supposed that H1 is supposed to halt.

The situation is paradoxical and we conclude that H1 cannot exist and this 

problem is undecidable.

H

Halting tester
H1

Yes, halts

No, doesn’t halt

H1 

Infinite Loop

The Halting program is unsolvable



10/26/2009

18

Complexity of Problems

• Time Complexity: The number of instruction 
executions required
– Unless otherwise noted, “complexity” means “time 

complexity.”

• Theta or Big-O notation
– A problem is in class Θ(f(n)) if it can be solved in some 

number of steps proportional to f(n)
• A problem is in class Ο(f(n)) if it can be solved in some 

number of steps proportional or less than f(n);  i.e. f(n) is 
an upper bound

– Examples
• Sequential search is Θ(n)
• Binary search is Θ(lg n)
• Insertion Sort is Ο(n2)

Graphs of the mathematical 

expressions n, lg n, n lg n, and n2
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P versus NP

• Class P: All problems in any class Θ(f(n)), where f(n) is a 
polynomial; problem can be solved in polynomial time

• Class NP: All problems that can be solved by a 
nondeterministic algorithm in polynomial time

Nondeterministic algorithm = an algorithm described 
by a Turing Machine that could be in multiple states at 
the same time

Given a proposed solution to a problem, can verify if 
the proposed solution is an actual solution in 
polynomial time.

• Whether the class NP is bigger than class P is currently 
unknown.

NP ⊇ P

• NP is obviously a superset of P

• But many problems appear to be in NP but 

not in P

– E.g., consider a “sliding tile” puzzle

Solve in polynomial time?  (e.g. function of # of tiles)

But given a proposed solution, easy to verify if it is correct in 

polynomial time
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• 29 Node Traveling Salesperson 

Problem

• 29! = 8.8 trillion billion billion 

possible asymmetric routes.

• ASCI White, an IBM 

supercomputer being used by 

Lawrence Livermore National 

Labs to model nuclear 

explosions, is capable of 12 

trillion operations per second 

(TeraFLOPS) peak throughput

• Assuming symmetric routes, 

ASCI White would take 11.7 

billion years to exhaustively 

search the solution space

The Big Question 

• Is there anything in NP that is not in P?
• We know that P ⊆ NP
• But it is unknown if P = NP
• Most people believe that P ≠ NP due to the 

existence of problems in NP that are in the class 
NPC, or NP Complete

• The Clay Mathematics Institute has offered a 
million dollar prize to anyone that can prove that 
P=NP or that P≠NP


