

CS101
Overview of Programming, Virtual Machines, System Software

What is programming? Quite simply it is planning or scheduling the performance of
some task or event. In the context of computers, computer programming is the planning
of a sequence of steps for a computer to follow. Consequently, a computer program is a
list of instructions to be performed by a computer.

Writing a program

There is no little man inside the computer. It is a mindless automaton that only does
exactly what you tell it to do. So you, the human programmer, must first design a
solution to your problem, and then implement it. Here is one lifecycle for designing and
implement computer systems:

1. Problem-Solving and Specification Phase
a. Analysis, Specs of the problem and solution
b. Design solution, algorithm
c. Verify solution

2. Implementation Phase
a. Translation solution into program
b. Testing
c. Debugging

3. Maintenance Phase
a. Use
b. Maintain, perhaps looping back to step 1

There are many other development methodologies, many of which are discussed in more
detail in an Information Systems or Software Engineering course. We will weave some
of these concepts into this course as we progress. One of the big dangers of
programming is the temptation to jump straight to the implementation. This is dangerous
because it may result in a sloppy solution that was not thoroughly designed.

Algorithms to Programs

A key component prior to implementing a computer program is the design of an
algorithm. As we have seen before, an algorithm is simply a sequence of steps to solve a
particular program.

After the algorithms have been designed and analyzed, programs can be constructed.
This is the process of converting the English algorithms to a strict set of grammatical
rules that are defined by the programming language. There is syntax to the rules as well
as semantics. Syntax refers to the order of instructions, like grammatical rules (“favorite
the 201 class computer” is syntactically incorrect). Semantics refers to the
understanding of the syntax (“green ideas sleep furiously” is syntactically correct but

semantically vague). An incorrect application of either will lead to errors or bugs; the
semantic bugs are the most difficult to find.

Once again, sometimes it is tempting to take a shortcut and not spend the time defining
the problem and jump straight to coding. At first this saves lots of time, but in many
cases this actually takes more time and effort later if the program needs to be redesigned
due to mistakes. Developing a general solution before writing the program helps you
manage the problem, keep your thoughts straight, and avoid mistakes that can take much
longer to debug and maintain than to code.

Documentation is another key part of the programming process that is often ignored.
Documentation includes written explanations of the problem being solved, the
organization of the solution, comments within the program itself, and user manuals that
describe how to use the program.

Brief History of Programming Languages

1958: Algol defined, the first high-level structured language with a systematic syntax.
Lacked data types. FORTRAN was one of the reasons Algol was invented, as IBM
owned FORTRAN and the international committee wanted a new universal language.

1965: Multics – Multiplexed Information and Computing Service. Honeywell mainframe
timesharing OS. Precursor to Unix.

1969: Unix – OS for DEC PDP-7, Written in BCPL (Basic Combined Programming
Language) and B by Ken Thompson at Bell Labs, with lots of assembly language. You
can think of B as being similar to C, but without types (which we will discuss later).

1970: Pascal designated as a successor to Algol, defined by Niklaus Wirth at ETH in
Zurich. Very formal, structured, well-defined language.

1970’s: Ada programming language developed by Dept. of Defense. Based initially on
Pascal. Powerful, but complicated programming language.

1972: Dennis Ritchie at Bell Labs creates C, successor to B, Unix ported to C. “Modern
C” was complete by 1973.

1978: Kernighan & Ritchie publish “Programming in C”, growth and popularity mirror
the growth of Unix systems.

1979: Bjarne Stroustrup at Bell Labs begins work on C++. Note that the name “D” was
avoided! C++ was selected as somewhat of a humorous name, since “++” is an operator
in the C programming language to increment a value by one. Therefore this name
suggests an enhanced or incremented version of C. C++ contains added features for
object-oriented programming and data abstraction.

1983: Various versions of C emerge, and ANSI C work begins.

1989: ANSI and Standard C library. Use of Pascal declining.

1998: ANSI and Standard C++ adopted.

1995: Java, designed at Sun Microsystems, goes public, which some people regard as the
successor to C++. Java is actually simpler than C++ in many ways, and cleaned up many
of the ugly aspects of C++.

Note that this is not a history of all programming languages, only C++ to Java! There are
many other languages, procedural and non-procedural, that have followed different paths.

What is a Programming Language – Assemblers, Compilers, Interpreters

Internally, all data is stored in binary digits (bits) as 1’s and 0’s. This goes for both
instructions and data the instructions will operate on. This makes it possible for the
computer to process its own instructions as data.

Main memory can typically be treated like a large number of adjacent bytes (one byte is 8
bits). Each byte is addressable and stores data such as numbers, strings of letters, ASCII
codes, or machine instructions. When a value needs to be stored that is more than one
byte, the computer uses a number of adjacent bytes instead. These are considered to be a
single, larger memory location. The boundaries between these locations are not fixed by
the hardware but are kept track by the program:

Memory Address Contents
… …
Byte 4000 11101110 (2 byte memory location at 4000)
Byte 4001 11010110
Byte 4002 10101011 (1 byte value, e.g. ASCII char)
Byte 4003 11010000 (3 byte memory location at 4003)
Byte 4004 00000000 e.g. string
Byte 4005 11011111
… …

There is only a finite amount of memory available to programs, and someone must
manage what data is being stored at what memory address, and what memory addresses
are free for use. For example, if a program temporarily needs 1000 bytes to process some
data, then we need to know what memory addresses we can use to store this data. One
of the nice things about Java is that much of this memory management will be done for
us by the Java runtime environment.

Computer instructions can be programmed directly as machine code. When computers
were first developed, the machine code was the only way to write programs.

Ex: 110110 might be the instruction to add two numbers
 110100 might be the instruction to increment a number
 etc.

As you have likely surmised from the previous exercises with machine code, it is very
tedious to write programs in direct machine code. One step above machine code is
assembly code. Assembly replaces the machine codes with more English-like codes that
are easier to remember. These codes are called mnemonics.

Ex:
 ADD 110110
 INC 110100
 Etc.

Although the assembly codes are easier for humans to work with, the computer cannot
directly execute the instructions. But people write programs to translate the instructions
into machine code. These programs are called assemblers.

Assembly is still a lot of work for programmers to use because one must know exactly
what machine-level instructions are available. Today most programmers use high-level
programming languages that are easier to use than assembly due to increased generality
and a closer correspondence to English and formal languages.

A program called a compiler translates programs in high level languages into machine
language that can be executed by the computer. C++, C, Pascal, Ada, etc. are all
examples of high level languages. (So is Java, but we’ll get to that in a minute!)

Human Brain English Algorithm

High Level Language
(C++, C, Pascal…)

Machine Code Object Files

compiler

Low Level Language -
Assembly

assembler

linker

Executable File

A program written in a high level language is called a source program. The compiler
takes the source program and typically produces an object program – the compiled or
machine code version of the source program. If there are multiple source files that make
up a final program, these source programs must then be linked to produce a final
executable.

Note that compilers on different machine architectures must produce different machine
code. A macintosh cannot understand machine code intended for an Intel processor.
However, if there is a standard version of the high level language, then one could write a
program and have it compile on the two different architectures. This is the case for
“standard” programs, but any programs that take part of a machine’s unique architecture
or OS features will typically not compile on another system.

Note that under this model, compilation and execution are two different processes.
During compilation, the compiler program runs and translates source code into machine
code and finally into an executable program. The compiler then exits. During execution,
the compiled program is loaded from disk into primary memory and then executed.

C++ falls under the compilation/execution model. However, note that some
programming languages fall under the model of interpretation. In this mode,
compilation and execution are combined into the same step, interpretation. The
interpreter reads a single chunk of the source code (usually one statement), compiles the
one statement, executes it, then goes back to the source code and fetches the next
statement.

Examples of some interpreted programming languages include JavaScript, VB Script,
some forms of BASIC (not Visual Basic), Lisp, and Prolog.

C++ source

PC Compiler

Mac Compiler

PC Machine Code

Mac Machine Code

X=3
X=X+1
…

Source Code
Interpreter 11011101

Machine Language
Statement

ExecuteNext statement

Question: What happens if you modify the source on a compiled programming language
(without recompiling) vs. an interpreted programming language and execute it?

Answer: the interpreted program will run with the changes, but a compiled program
requires that the program be recompiled before new changes take effect.

What are the pro’s and con’s of interpreted vs. compiled?

Compiled:

• Runs faster
• Typically has more capabilities

o Optimize
o More instructions available

• Best choice for complex, large programs that need to be fast

Interpreted:

• Slower, often easier to develop
• Allows runtime flexibility (e.g. detect fatal errors, portability)
• Some are designed for the web

In the midst of compiled vs. interpreted programming languages is Java. Java is unique
in that it is both a compiled and an interpreted language. A Java compiler translates
source code into machine independent byte code that can be executed by the Java virtual
machine. This machine doesn’t actually exist – it is simply a specification of how a
machine would operate if it did exist in terms of what machine code it understands.
However, the byte code is fairly generic to most computers, making it fairly easy to
translate this byte code to actual native machine code. This translation is done by an
interpreters that must be written on different architectures that can understand the virtual
machine.

The great benefit of Java is that if someone (e.g. Sun) can write interpreters of java byte
code for different platforms, then code can be compiled once and then run on any other
type of machine. Unfortunately there is still a bit of variability among Java interpreters,
so some programs will operate a bit differently on different platforms. However, the goal
is to have a single uniform byte code that can run on any arbitrary type of machine
architecture.

Public class Foo {
if (e.target=xyz) then

this.hide();
}

Java
compiler

01010001
01010010

Mac Interpreter

PC Interpreter

PalmPilot Interpreter

Another benefit is we can also control “runaway” code that does things like execute
illegal instructions, and better manage memory. These topics will be discussed more
later.

System Software

The use of assemblers and compilers makes programming easier. However, we still need
more to really make our computer usable. For example, what starts a program running in
the first place? How do we load a program from disk into memory? What if we want to
run lots of different programs? All of these tasks are taken care of by the system
software also known as the operating system (OS).

The purpose of the operating systems is to be the master controller for all of the activities
that take place within the computer. It also provides the main interface that you use to
interact with application software and the file system. A few common operating systems
include:

 Windows
 Windows 2000, NT, XP
 Windows ME, 98, 95
 Mac OS
 DOS
 Unix
 Linux
 Ultrix
 SunOS
 Solaris
 HPUX
 Etc.
 BeOS

The OS provides access to the computer hardware, and then application software runs on
top of the OS software. As such, the OS provides a nice, high-level interface to the basic
functions on the machine to make writing application programs easier. Since programs
are typically written in conjunction with the services provided by the operating system,
sometimes the machine plus the operating system is called a virtual machine.

The OS provides external and internal services. External services are those that are
visible to users, like starting programs, accessing files, displaying icons, displaying a
graphical user interface, etc. You should be familiar with the external services from your
own experience using an operating system like Windows.

Internal services are those that are mostly invisible, like controlling processor time,
memory access, disk access, multitasking, and utilities.

Processor Time refers to what program gets to execute next (a process refers to a
program that is running in memory). Most computers today support multitasking which
is the process of allowing each program to run for a very short time slice before switching
to another program. By switching quickly among all available programs, it looks like
everything is running simultaneously. This is what allows you to be reading your email
at the same time that your computer is downloading a file and also printing out a
document. In reality, the computer is switching back and forth between the different
tasks very quickly, giving you the illusion that it is running all tasks simultaneously.

One of the major issues that arise with multitasking computers is the issue of deadlock.
What if program 1 and 2 both want exclusive access to two resources? Let’s say both
programs want to use the printer and the scanner. Program 1 first grabs access to the
printer. This means that no other program gets to use the printer until program 1 is
finished. Then program 2 then grabs the scanner before program 1 gets it. Now, both
programs wait until the other resource is free – program 1 is waiting for the scanner to be
free, and program 2 is waiting for the printer to be free. However in this case they will
never be free, because each program is waiting for the other to release it. Techniques to
avoid deadlock are discussed in the operating systems class.

Memory access refers to the difficult process of managing what goes into memory and
where. There is only a finite amount of memory in the computer. Programs must be
loaded somewhere into memory. Each program also will want to use memory to store
data. The operating system’s memory manager determines where programs and data can
be stored so there are no conflicts. Most OS’s today support a feature called virtual
memory which uses the hard drive to simulate a large amount of RAM in the event that a
program needs to use more memory than is physically available.

Finally, utilities are collections of routines that provide useful services to users or other
parts of the operating system. For example, a text editor such as notepad or packages to
perform common graphics routines are utilities.

Another type of OS is the network operating system, such as Novell’s Netware. This
type of operating system is becoming more popular today. In a network OS, a network
server holds the applications, data, and performs many crucial functions. Computers that
want to access these applications are called clients. For example, to run a word
processor, instead of storing it locally on a client, the client instead must download it
from the server. This allows for centrality and easy updates (imagine if you had to
upgrade word processors – there is only one place to do it in the network OS, in the
server, instead of in all the clients). However, the server may become a bottleneck if it
becomes overloaded with requests. We’ll talk more about networking later in the class
(chapter 12).

	CS101
	Overview of Programming, Virtual Machines, System Software
	Writing a program
	Algorithms to Programs
	Brief History of Programming Languages
	What is a Programming Language – Assemblers, Compilers, Interpreters

