CS101, Mock
Syntax, Program Structure, Data Types

In this section, we' Il look in more detail about the format, structure, and functions
involved in cregting Java programs.

General Format of a Smple Java Program

In generd, your programs will have the following structure;

import ...

class ClassName {
public variable declarations;
private variable declarations;

public method declarations;
private method declarations;

The import statement at the top tells the Java compiler what other pre-compiled packages
you want to use. Rather than rewrite commonly used procedures from scratch, you can
use pre-built packages. The import statement specifies which packages you wish to use.
Insde the class, you will declare variables that belong to that class. We Il focus on two
categories of variables, public and private, where public isinformation we' |l make
available to the rest of the program, and private is only avalable within the dass. Then
we |l define methods that make up the class.

Hereisalig of the termsthat you will commonly encounter:

- Program : A generd term describing a set of one or more Java classes that can be
compiled and executed

- Variable :Thisisanamefor avauewe canwork on. Thisvaue will be stored
somewhere in memory, or perhgpsin aregister. Variables can refer to smple vaues
like numbers, or to entire objects.

- Method : Thisisafunction. It groupstogether satements of code to perform some
type of task.

- Class : This describes the object that contains variables and methods.

- Object : Thisis used interchangeably with dlass. More specificdly, an object is
an actua instance of an object created by the new statement.

- ldentifier : Thisisthe name of an entity in Java, which could be a class, variable,
method, etc.

- Keyword : Thisisareserved word with specid meaning to Javaand can't be used as
an identifier. For example, the word “class’

- Statement : Thisisasngleline of code that does aparticular task. A
statement must be terminated by a semicolon.

- Parameters : These are vaues that are passed to a method that the method will
operate on.

So far we ve written our first program that could output aline of text. Let’s expand from
the first program and first learn more output options.

To output text, we used “ System.out.println” and the message we wanted within
quotation marks. But what if we wanted to print out a double quotation mark? The
computer would get confused because it would think the quotation mark you want to
print really ends the message to be printed:

cl ass Qut put Test {
public static void main(String[] args) {
Systemout.println(“A fanous politician once said,
“1f we do not succeed, then we run the risk of failure.” *“);

}
}

What will happen when this program is compiled? The compiler will complain about
missing some expected character. Text enclosed in double quotesiis referred to as
grings. If wewant to print adouble quote itself (or some other specia characters) then
we need to use an escape character. In Java, the escape character is\. The program
that worksis:.

cl ass Qut put Test {
public static void main(String[] args) {
Systemout.println(“A fanous politician once said,

\“If we do not succeed, then we run the risk of failure.\" *);
}
}
Some other escape characters:
\n - newline, Moves the cursor to the next line like end|
\t - horizonta tab
\r - carriage return, but does not advance theline
\\ - print the escape character itself

Quiz : Output of the following?

cl ass Qutput Test {
public static void nmain(String[] args) {
Systemout.println(“He said, \n\”"Who's responsible
for the riots? \tThe rioters.\"");

}
}

Let’s expand our program alittle bit more to include some identifiers. Anidentifier is

made up of letters, numbers, and underscores, but must begin with aletter or an
underscore.

Beware Javaiscase sendtive. Thismeansthat Vdue, VALUE, vadue, and value are
four separate identifiers. In fact, we can congtruct 32 ditinct identifiers from these five
letters by varying the capitdization. Which of these identifiers are vdid?
_FoosBall FOOsBAll %FoosBal 9FoosBdl% 12391 * FF99

Note: When picking identifiers try to sdlect meaningful named
Hereisashort program that uses some variables as identifiers:

class OutputTest {
public gatic void main(String[] args) {
char period ="." /I Single quotes
String name = "Cotty, Manny”; // Double quotes
String foods = "cheese and padtd’;
int someNum = OxF; /1 Ox indicates hex

System.out.printin(name + " lovesto eat " + foods);
System.out.printin(someNum + " times as much as you" + period);

}

Let'swak through the program:

Lines 3 through 6 ingtruct the compiler to assign variables of a particular type. The
format isto firg indicate the data type identifier, in this case char, String, or int.

- char indicates that the value to be stored isto hold asingle ASCII character.

- String (note the uppercase S) indicates that the value to be stored can be
composed of many characters. Note that if we want to modify the contents of
agring, thereis another type caled StringBuffer that lets us do this
efficiently. We can change Strings to something else, but this ends up making
anew copy of the String ingteed of changing the origind String.

- intindicates that we want to store an integer vaue, eg. usngthe2's
complement representation.

Inline 3, aperiod is sored in the variable named period. In line 4, the string made up of
thecharacters'C’, ‘o', ‘t’, ‘t’, 'y’ *) ,* . 'M’, ‘a, ', ', 'y isdtored in name. By
convention, most Java programmers use al uppercase for identifiers that won't change,

and lowercase mixed with uppercase for ones that may change. Since these strings won't
change, we could have named thisidentifier NAME insteed of name.

In line 6, we defined one numeric vaue, someNum to OxF. This sets someNum to fifteen.
We have a number of ways of defining numbers

Decimd: Use the norma number, eg. 9 =decimd 9
Octa: Usealeading 0, eg. 011 =decimd 9
Hex: Usealeading Ox, eg. OxF =decimd 15

When the compiler processes the variable declarations, it assgns a memory location to
each one. Itisintended that the data we store in each memory location is of the same
type that we defined it in the program. For example, we defined someNum to be of type
int. This meanswe should only store integers into the memory location alocated for
someNum. We shouldn’t be storing floating point numbers, strings, or characters.

Also note that it is cusomary to define al variables used within afunction & the top of
the function (in this case, the function ismain).

Findly, we have output statements that print the contents of the variables. Note that
when we use println, we can print out variables of different types and concatenate the
output using the + symbol. The + symbol will aso serve as addition as we will see later!
S0 be aware that asymbol may do different things in adifferent context.

Thefind output when runis

Cotty, Manny loves to eat cheese and pasta
15 times as much as you.

Wordsand Symbolswith Special M eanings

Certain words have predefined meanings within the Javalanguage; these are cdled
reserved words or keywords. For example, the names of data types are reserved words.
In the sample program there are reserved words. char, int, void, main. We aren’t
alowed to reserved words as names for your identifiers.

Data Types

A data type is a st of vaues and a st of operations on these vaues. In the preceding
program, we used the data type identifiersint, char, and String.

In Java there are four integra types that can be used to refer to an integer vdue (whole
numbers with no fractiond parts). These types are byte, short, int, and long and are
intended to represent integers of different szes. These are just integers stored using the
2's complement format that by now you should know and love. The st of vaues for
each of these integral data types is the range of numbers from the smdlest vadue that can

be represented through the largest vaue that can be represented. The operations on these
vaues are the sandard arithmetic operations dlowed on integer vaues.

the sizesfor the integer types are:

byte - one byte, holds anumber from —128 to 127

short — two bytes, holds numbers up to 32767

int — four bytes, holds numbers from —2,147,483,648 to 2,147,483,647 (231),
long — eight bytes , holds numbers up to around 108

You might aways be tempted to use type long for dl numbers because it can hold the
largest range. While this is possble, it would not be efficient if the vaues your program
is processng are dl smdl. In this case, you'll be wading lots of hits in dlocaing eight
bytes of space when you might redly only be using one byte.

Data type char, which can aso be used to store bytes, has a primary use for describing
one dphanumeric character. Although arithmetic operations are defined on aphanumeric
characters because they are type char (dso an integrd type), such operations would not
make any sense to us at this point. However, there is a collating sequence defined on
each character set, s0 we can ask if one character comes before another character (the
ASCII code). Fortunately, the uppercase letters, the lowercase letters, and the digits are
in order in dl character sets. The relaionship between these groups varies, however. We
discuss manipulaing char datain more detail later.

We used two variables of data type String, name and foods. String is actudly not an
integral data type; it is an object. WEIl say more about the difference later. For now,
you can use String to hold a sequence of characters. Note that string data is denoted
with double quotes, not a single quote as for char. “I” refers to the string with the letter |
in it, while ‘I’ refers to the character with the letter I. The two are different, they are
different types and are stored in adramdticaly different way!

Finally, there are separate data types for fractiond or floating point numbers. These are
numbers that are stored using the IEEE 754 format we discussed previoudy in class.
There are two types of floating point storage:

float - 4 bytes, using IEEE 754. Vauesup to 10°® possible
double — 8 bytes, using |IEEE 754. Values up to 10°%® possible

Arithmetic Expressons

Vaiadbles and condants of integrd and floating point types can be combined into
expressons usng aithmetic operators. The operations between congtants or variables of
these types are addition (+), subtraction (-), multiplication (*), and divison (/). If the
operands of the divison operation are integrd, the result is the integrd quotient. If the

operands are floating point types, the result is a floating point type with the division
carried out to as many decima places as the type dlows. There is an additiona operator
for integra types, the modulus operator (%). This operator returns the remainder from
integer divison.

In addition to the standard arithmetic operators, Java provides an increment operator and
a decrement operator. The increment operator ++ adds one to its operand; the decrement
operator -- subtracts one from its operand.

Examples

cl ass Qutput Test {
public static void nmain(String[] args) {
int x=1;

X = X + 55;
System out. println(x);

}
Samewith:

x=5*10* 2;
Xx=14%5;
x=10/2;

X--;
x=11/2;

x=1/2

x = 100000000 * 100000000; (may get overflow warning)

Note : Truncation, not rounded to nearest integer

Precedence Rules

The precedence rules of arithmetic apply to arithmetic expressons in a program. That is,
the order of execution of an expresson that contans more than one operation is
determined by the precedence rules of arithmetic. These rules state that:

1. parentheses have the highest precedence

2. multiplication, divison, and modulus have the next highest precedence

3. addition and subtraction have the lowest precedence.
Because parentheses have the highest precedence, they can be used to change the order in
which operations are executed. When operators have the same precedence, order is left
to right.

Examples

Xx=1+2+3/6; output?
x=(1+2+3)/6;

X=2*3+4*5;

Xx=2/4*4]/2

x=4/2*2/4;

Xx=10% 2+ 1;

Converting Numeric Types

If an integral and a floating point varisble or congtant are mixed in an operation, the
integrd vaue is changed temporarily to its equivaent floating point representation before
the operation is executed. This automatic converson of an integra vaue to a floating
point vaue is cdled type coercion. Type coercion aso occurs when a floating point
vaue is assgned to an integrd variable. Coercion from an integer to a floating point is
exact. Although the two vdues ae represented differently in - memory, both
representations are exact. However, when a floating point value is coerced into an
integrd vaue, loss of information occurs unless the floaing point vdue is a whole
number. That is, 1.0 can be coerced into 1, but what about 1.5? Is it coerced into 1 or 2?
In Java when a floating point vaue is coerced into an integrd vaue, the floaing point
vaueistruncated Thus, thefloating point value 1.5 is coerced into 1.

Type changes can be made explicit by placing the new type in parentheses in front of
thevaue

intVdue = int(10.66);
produce thevadue 10 inintVadue

Here are some same typecasts:

(double) intVaue; (int) doubleVaue;
(long) intVaue; (int) longvdue;
(long) floatVdue,

Examples with float:

cl ass Qutput Test {
public static void nmain(String[] args) {
float x=1;

x =11/ 2;
System out. println(x);

}

Y ou might think thiswould produce 5.5. But ingtead it produces 5.0. Why?

How about the following:

x = (float) 11/ 2; Il Snce 11 isafloat, 2 isaso turned into afloat
x =11/ (float) 2; /I Smilar to above

Xx=2/4*4]2

x=2140*4]2; /1 4.0 treated as adouble

/I Compiler may complain about double to float

The bottom line here isto be careful if you are mixing integers with floating point vaues
in arithmetic expressons. Especidly if performing division, you might end up with zero
when you redly want a floating point fractiond answer. The solution isto coerce one of
the integersinto afloat or double so the entire calculation is made using floating point.

Let's put together what we know so far with an example program. Hereis the problem:

Y ou are running amarathon (26.2 miles) and would like to know what your finishing
timewill beif you run aparticular pace. Modt runners cdculate pace in terms of
minutes per mile. So for example, let’s say you can run at 7 minutes and 30 seconds per
mile. Write aprogram that cdculates the finishing time and outputs the answer in hours,
minutes, and seconds.

[nput:
Digtance: 26.2
PaceMinutes. 7
PaceSeconds: 30

Output:
3 hours, 16 minutes, 30 seconds

Here is one dgorithm to solve this problem:

1. Express pacein terms of seconds per mile, cdl this SecsPerMile

2. Multiply SecsPerMile* 26.2 to get the total number of secondsto finish.
Cdl this result Total Seconds.

3. There are 60 seconds per minute and 60 minutes per hour, for atota of 60* 60
= 3600 seconds per hour. If we divide Tota Seconds by 3600 and throw away
the remainder, thisis how many hoursit takesto finish.

4. TotaSeconds mod 3600 gives us the number of seconds |eftover after the
hours have been accounted for. If we divide this vaue by 60, it givesusthe
number of minutes,

5. TotdSeconds mod 3600 gives us the number of seconds |eftover after the
hours have been accounted for. 1f we mod this value by 60, it gives usthe
number of seconds leftover. (We could aso divide by 60, but that doesn't
change the result).

6. Output the values we calculated!

Code:

cl ass RacePace {
public static void nmain(String[] args) {

doubl e di stance = 26. 2;
int paceM nutes = 7,
i nt paceSeconds = 30;

| ong secsPerM | e, total Seconds;

secsPerM |l e = (paceM nutes * 60) + paceSeconds;

total Seconds = (long) (distance * secsPerMIle);
Systemout.print("You will finish in: ");

System out. print(total Seconds / 3600 + " hours, ");

System out. print((total Seconds % 3600) / 60 + " minutes, ");
System out. println((total Seconds % 3600) % 60 + " seconds.");

}
A few things to note about this program:
total Seconds = (long) (distance * secsPerMile);

Since distance is a double and secsPerMile is an int, the whole thing is typecast to along,
which isthe type of tota Seconds.

System.out.print is the same as System.out.printin, except System.out.print does not add a
newline to the end of the output. This means that everything gets printed onto the same
line until the very find statement, which prints a newline with the printin statement.

The output is;

You will finish in; 3 hours, 16 minutes, 30 seconds.

If we wanted to caculate the finish time for different distances and different paces, we'll
need to change the values in the program and recompileit. This can be inconvenient — it
would be nice to have the user input any vaues he or she desires. In the next few lectures
we' |l see how to input vaues from the user using the book’ s input package and also
create some graphical windowsto display data.

