
CS101 Lecture Notes, Mock
Overview of Java Programming

Hello, World

The first program that many people write is one that outputs a line of text. In keeping
with this vein, we will start with a program that prints, “Hello, world”. This program is
also in the textbook, but I have changed it slightly to impart more of an Object Oriented
flavor. First, here is the program in its entirety. It actually consists of two files:

 File: HelloWorld.java

 // Put your name and date here
 // followed by a description of the code

// This is a Hello World object that has a single
// method to print “hello world”
class HelloWorld {

 public void printHello() {
 System.out.println(“hello, world”);
 }
 }

 File: UseHello.java

 // This file is the main object, when the program
 // starts it beings executing in main

class UseHello {
 public static void main(String[] args) {
 HelloWorld myHello; // Declare HelloWorld object

myHello = new HelloWorld();
 myHello.printHello();
 }
 }

Before we try to compile and run this program, let’s go through a description of what is
in here. First, any part of a line that begins with // is considered a comment and from the
// on to the end of the line, the text is ignored. Descriptive text about what the program
does should go into the comment fields. We’ll use these to describe the input, output,
and dependency behavior of the program. Also use comments as a place to type your
name with the file!

A Java program can be composed of many files. In this case, our program consists of two
files. Each file corresponds to what is called a class. A class is Java’s way of defining an
object. However, a Java program should have only one file that contains the special
function called main. In our case, this is in the file UseHello.java, so let’s start there.

After the comments, the first line of UseHello.java is “class UseHello“. This defines
the name of the class (i.e. the object). The class name must match the name of the file!
Java is case-sensitive, so Java will complain about a file named “usehello.java” but the

contents of this file contains “UseHello” instead. We will place each class object into its
own separate file.

The left curly brace is used to denote where the body of the class begins. The right curly
brace denotes where the body of the class ends. It is common notation to put the right
end brace on a line on its own in the same column as where the class begins, so one can
see which curly brace matches with what statement. There is great debate regarding the
placement of the curly braces. At this point it is worth mentioning that the compiler
doesn’t care about whitespace between instructions. Whitespace is spaces or carriage
returns. You can add as many spaces or blank lines as you wish so that the program is
easier for humans to read. You need at least one whitespace character to separate
instructions, but others will be ignored. If you wanted to, you could write the entire
program on a single line! This would not make it very human-readable, but the compiler
will not care.

The next line is “public static void main(String[] args) {“. This defines a function called
“main” in the UseHello object. As indicated earlier, main is a special function. This is
where your program begins execution! In Java, functions are often referred to as
methods . I will use these terms interchangeably. You can think of a method as a
collection of code that does some specific task. The main method has a few terms that
will look cryptic. You’ll learn more about these things later, but for now you can
consider this as “boiler plate” that you will just put in all your programs to make them
work. Nevertheless, here is a short description of what these terms mean:

 public - The method is made available to anyone that wants to use it
 static - Only make one copy of this method
 void - This method should not return any value
 (e.g., functions can be designed to return values, f(x))
 String[] - A String refers to a block of ASCII characters like a
 word or sentence.

 The [] indicates that we want an array, or a collection,
 of many strings.

 args - This is a variable name used to refer to the strings
 In most of our programs we won’t use this, but it refers
 to command-line arguments passed to our program

The next line is “HelloWorld myHello; “. This entire line is called a statement. Every
statement must end with the semicolon, also known as a statement terminator. One of
the things that gets tricky for beginning programmers is where to put the semicolons; it
just takes experience to learn where the semicolons go!

This particular statement declares a variable to be of type “HelloWorld”. HelloWorld is
another object that we are defining in a separate file. In other words, we are going to
create an instance of this other object. At this point, we are only defining that we would
like a HelloWorld object, and we will reference this object through the name “myHello”.

The programmer has the luxury of picking whatever name is appropriate to assign to this
variable.

The next line “myHello = new HelloWorld();” actually creates a new instance of the
HelloWorld object. This allocates the memory to put this object into memory and also
runs any code that might be associated with initializing the object. The key operator here
is the word new which tells the Java compiler to allocate the object.

The next line “myHello.printHello();” invokes the function, or method, named
“printHello” that is defined for the “myHello” variable. Since myHello is defined to be
of type HelloWorld, we will be invoking the printHello function in the HelloWorld
object. The parentheses are used to indicate that this is a method or function that we are
invoking. This will do the actual work of printing out “Hello, world.”

The final lines in this file are closing curly braces to denote the end of the main function
and the end of the class.

Now let’s turn our attention to the HelloWorld.java file. This file does not contain a main
function, because we can have only one main function in a Java program, and we already
put one in UseHello.java. This file defines a class object called HelloWorld. This class
also defines a single method, or function, called printHello:

 public void printHello() {
 System.out.println(“hello, world”);
 }

As with the main function, the keyword “public” indicates that anyone may invoke this
method. The keyword “void” indicates that there is no return value for the function.
Finally, we give the name of the function, in this case, “printHello”. The parenthesis
identify this as a function.

All this function does is output the text “hello, world”. To do this, it uses the most basic
Java operation to produce output: System.out.println(“….text string here…”);

The dotted notation of using periods starts at a high-level Java object, and each dot
indicates a more specific Java object. Objects form a hierarchy. For example, here is a
small object hierarchy for System:

println()

out

BufferedInputStream() read() OutputStream()

in err

System

Sample Object Hierarchy

System.out.println() invokes the method to print a string of data to the screen. Similarly,
System.in.read() would invoke a function to read input from the keyboard. Each “dot”
moves us down the hierarchy to a more specific function or object.

To print a string, note that we used double-quotes. Any double-quoted block of
characters is considered a literal string, and is created by concatenating together the
appropriate ASCII characters.

Finally, the file is terminated with right curly braces to close the printHello() method and
the class. Once again, you might not understand everything that is going on here, but it
should make more sense as we go along.

Execution

When we first run the program, initially Java will create an object for UseHello. This is
depicted below:

As we execute the code in main, the first thing we do is create a variable of class
HelloWorld. The new command creates the actual instance of this object:

Finally, when we invoke myHello.printHello(), we execute the code contained in the
printHello() method of the HelloWorld object:

UseHello

main

UseHello

main
myHello

HelloWorld

printHello

UseHello

main
myHello

HelloWorld

printHello

System.out.println(…);

You might be wondering why I have put the code to print out “Hello World” into a
separate object. Couldn’t we just put it into UseHello directly as shown below?

class UseHello {
 public static void main(String[] args) {
 System.out.println(“Hello, world.”);
 }
 }

The answer is yes, we could do this! However, I’ve created a separate object to show off
the object-oriented properties of Java. By splitting off the code into an object, we can
create multiple “Hello World” objects if we like. Consider the following:

class UseHello {
 public static void main(String[] args) {
 HelloWorld myHello;
 HelloWorld yourHello = new HelloWorld();

myHello = new HelloWorld();
 myHello.printHello();
 yourHello.printHello();
 }
 }

In this example, we are creating two objects of type HelloWorld. One is called
“myHello” and the other is called “yourHello”. Notice that Java allows us to create a
new instance of this object on the same line that we define it, instead of using up two
lines of code like in the original version. This code can be depicted in the diagram
below:

We’ve created two objects of class HelloWorld. Each one invokes their own printHello
function. This is not very interesting for the HelloWorld program, but imagine if the
HelloWorld class was more complicated. For example, let’s say it is a class that
computes someone’s income tax. If we wanted a program that could compute the income

UseHello

main
myHello
yourHello

HelloWorld

printHello

System.out.println(…);

HelloWorld

printHello

System.out.println(…);

tax for two people (say, Fred and Mary), then we could create two of these objects, one
for Fred and one for Mary and each could compute their taxes individually using their
own object. However, we are sharing a common code base in defining the class, so this
greatly facilitates code sharing!

Compilation

The process of entering and compiling your program is different depending upon what
development environment you are using. We’ll be using a most primitive development
environment – using a text editor in conjunction with the java command-line compiler.
Other development environments include programs that allow more graphical views of
your code. These are called IDE’s (Integrated Development Environment). You’ll want
to use an IDE if you continue to develop larger and more complex Java programs, but the
text editor method will work for the simpler programs we’ll study in this class. You are
also welcome to use an IDE as well, but we won’t explicitly support one in class. The
book describes using an IDE called Kawa. There are also IDE’s you can download from
the java.sun.com web page for free.

To compile your programs, first enter them using a text editor. For example, you could
use vi under unix, or Notepad under Windows. The CS lab has a text editor called
TextPad that you can use too. Make sure the name of the file matches the name of the
class.

After the files have been created, compile them using the javac command. The
arguments are the names of the Java source code programs:

Ø javac HelloWorld.java UseHello.java

If there were any errors, the compiler will complain and tell you it encountered problems.
If all goes well, you’ll be returned to the prompt and you should now have a files named
“HelloWorld.class” and “UseHello.class” in your current directory. These are the
compiled versions of the Java source code. To run them, use the Java interpreter:

Ø java UseHello

This will run the program. Note that we didn’t enter the “.java” or the “.class” upon
executing the program. This command invokes the Java interpreter which will convert
the java byte code into native machine code and then run it.

