

CS101, Mock
Boolean Conditions, If-Then

Boolean Expressions and Conditions

The physical order of a program is the order in which the statements are listed. The
logical order of a program is the order in which the statements are executed. With
conditional structures and control structures that we will examine soon, it is possible to
change the order in which statements are executed.

Boolean Data Type

To ask a question in a program, you make a statement. If your statement is true, the
answer to the question is yes. If your statement is not true, the answer to the question is
no. You make these statements in the form of Boolean expressions. A Boolean
expression asserts (states) that something is true. The assertion is evaluated and if it is
true, the Boolean expression is true. If the assertion is not true, the Boolean expression is
false.

In Java, data type boolean is used to represent Boolean data. Each boolean constant or
variable can contain one of two values: true or false.

Relational Operators

A Boolean expression can be a simple Boolean variable or constant or a more complex
expression involving one or more of the relational operators. Relational operators take
two operands and test for a relationship between them. The following table shows the
relational operators and the Java symbols that stand for them.

Java Symbol Relationship

== Equal to (note two equal
signs!)

!= Not equal to (there is no <>)

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

For example, the Boolean expression

number1 < number2

is evaluated to true if the value stored in number1 is less than the value stored in
number2, and evaluated to false otherwise.

When a relational operator is applied between variables of type char, the assertion is in
terms of where the two operands fall in the collating sequence of a particular character
set. For example,

character1 < character2

is evaluated to true if the character stored in character1 comes before the character
stored in character2 in the collating sequence of the machine on which the expression is
being evaluated. Although the collating sequence varies among machines, you can think
of it as being in alphabetic order. That is, A always comes before B and a always before
b, but the relationship of A to a may vary. This is an artifact of the way the alphabet was
defined in the ASCII code. For ASCII, it turns out the A < a.

We must be careful when applying the relational operators to floating point operands,
particularly equal (==) and not equal (!=). Integer values can be represented exactly;
floating point values with fractional parts often are not exact in the low-order decimal
places. Therefore, you should compare floating point values for near equality. For now,
do not compare floating point numbers for equality.

For example consider the program below:

class NumberTest {

public static void main(String[] argv) throws Exception {
 float f = 1111111111;
 f = f + 1;

 System.out.println(f);
 }
}

The output is:

1.11111117E9

This is the same as 1111111117, not the expected 1111111112 that is the correct value.
This is due to roundoff errors with the IEEE 754 format. In any case, this shows that if
we compare for exact equality with an expected floating point value, we may not get a
match. But if we compare for a data range, then we should be ok.

Boolean Operators

You might recall we studied Boolean operators when we discussed algorithms. To
review, a simple Boolean expression is either a Boolean variable or constant or an

expression involving the relational operators that evaluates to either true or false. These
simple Boolean expressions can be combined using the logical operations defined on
Boolean values. There are three Boolean operators: AND, OR, and NOT. Here is a
table showing the meaning of these operators and the symbols that are used to represent
them in Java.

Java Symbol Meaning

&& AND is a binary Boolean operator. If both
operands are true, the result is true.
Otherwise, the result is false.
 True False
True True False
False False False

|| OR is a binary Boolean operator. If at least
one of the operands is true, the result is true.
Otherwise, the result is false.
 True False
True True True
False True False

! NOT is a unary Boolean operator. NOT
changes the value of its operand: If the
operand is true, the result is false; if the
operand is false, the result is true.
 Not_Value
True False
False True

If relational operators and Boolean operators are combined in the same expression in
Java, the Boolean operator NOT (!) has the highest precedence, the relational operators
have next higher precedence, and the Boolean operators AND (&&) and OR (||) come
last (in that order). Expressions in parentheses are always evaluated first.

For example, given the following expression (stop is a bool variable)

count <= 10 && sum >= limit || !stop

!stop is evaluated first, the expressions involving the relational operators are evaluated
next, the && is applied, and finally the || is applied. The evaluation is done in left-to-
right order and halts as soon as the result is known.

It is a good idea to use parenthesis to make your expressions more readable, e.g:

 (((count <=10) && (sum>=limit)) || (!stop))

This also helps avoid difficult-to-find errors if the programmer forgets the precedence
rules.

The following table summarizes the precedence of some of the Java operators we have
seen so far.

! ++ --
* / %
+ -

< <= >
>=
== !=
&&
||
=

Highest
d

Lowest
d

If-Then and If-Then-Else Statements

The If statement allows the programmer to change the logical order of a program; that is,
make the order in which the statements are executed differ from the order in which they
are listed in the program. The If-Then statement uses a Boolean expression to determine
whether to execute a statement or to skip it. The format is as follows:

 if (boolean_expression)
 statement;

The statement will be executed if the Boolean expression is true. If you wish to execute
multiple statements, which is called a block, use curly braces:

 if (boolean_expression) {
 statement1;
 statement2;
 …
 statement99;
 }

Although the curly braces are not needed when only a single statement is executed, some
programmers always use curly braces to help avoid errors such as:

 if (boolean_expression)
 statement1;
 statement2;

This is really the same as:

 if (boolean_expression)

statement1;
 statement2;

Such a condition commonly arises when initially only a single statement is desired, and
then a programmer goes back and adds additional statements, forgetting to add curly
braces.

We can also add an optional else or else if clause to an if statement. The else statement
will be executed if all above statements are false. Use else if to test for multiple
conditions:

 if (boolean_expression1)
 statement1; // Expr1 true
 else if (boolean_expression2)
 statement2; // Expr1 false, Expr2 true
 else if (boolean_expression3)
 statement3; // Expr1, Expr2 false, Expr3 true
 …
 else
 statement_all_above_failed; // Expr1, Expr2, Expr3 false

Here are two examples of equivalent if statements:

if (number < 0)
number = 0;

sum = sum + number;

if (number < 0) {
number = 0;

}
sum = sum + number;

This third example is different due to the placing of the curly braces. It lumps together
the statements number=0 and sum=sum+number only if number is less than 0:

if (number < 0) {
number = 0;
sum = sum+ number;

}

Here is another example.

System.out.println(“Today is a “);
if (temperature <= 32)
{
 System.out.println("Cold day.");
 System.out.println(“Sitting by the fire is appropriate.");
}
else
{
 System.out.println ("nice day. How about taking a walk?”);
}

There is a point of Java syntax that you should note: There is never a semicolon after the
right brace of a block (compound statement).

Finally here is an example using else-if, also referred to as a nested if statement:

 if (y==false)
 if (z < 50) {
 }
 else {
 ….
 }

There may be confusion as to what the final else statement goes to. Does it match up
with z<50? or with y==false? The rule is that the else is paired with the most recent if
statement that does not have an else. In this case, the final else statement is paired with (z
< 50). The above is equivalent to:

if (y==false) {
if (z < 50) {
…
}
else {
 ….
}

}

If we wanted the else to match up with y==false, we should change the braces
accordingly:

if (y==false) {
 if (z<5) { … }
}
else {
 …
}

In nested If statements, there may be confusion as to which if an else belongs. In the
absence of braces, the compiler pairs an else with the most recent if that doesn't have an
else. You can override this pairing by enclosing the preceding if in braces to make the
then clause of the outer If statement complete.

Common Bug! Confusing = and ==

The assignment operator (=) and the equality test operator (==) can easily be miskeyed
one for the other. What happens if this occurs? Fortunately, the program will not
compile. Look at the following statements.

 int i=0;
 i == i + 1;
 System.out.println(i);

This code fragment generates an error during compilation. i==i+1 will be flagged as an
improper instruction.

Look at the next statement going the other direction:

 int i=0;
 if (i=1) {
 System.out.println(“Value is 1”);
 }
 else {
 System.out.println(“Value is 0”)l
 }

This code will also be flagged as an error by the compiler. i=1 does not return a
Boolean, and we must make a Boolean comparison in the if-statement.

Fortunately, these common problems are discovered by the Java compiler. However, if
you start to program in C or C++, these statements will not be flagged as errors by the
compiler because they are valid statements. Unfortunately, they are probably not
statements you wish to make and will likely result in a program that does not function
correctly.

	Boolean Data Type
	Relational Operators
	True False
	
	If-Then and If-Then-Else Statements
	Common Bug! Confusing = and ==

