
 

 

CS 101, Mock 
Computer Architecture 
 
Computer organization and architecture refers to the actual hardware used to construct 
the computer, and the way that the hardware operates both physically and logically 
(logically is what the hardware does when executed, physically is how everything fits 
together and what is connected to what). 
 
Computer architecture is discussed in chapter 5 of the textbook.  We will also be 
presenting a simple, hypothetical machine architecture in these notes. 
 
Under The Cover 
 
Opening up the cover of a computer reveals the major physical (but not really the logical) 
components.  Immediately you should see your power supply, floppy or hard drives, and 
then a motherboard containing the Central Processing Unit (CPU), main memory, and 
then any extra circuit boards inserted into slots on the motherboard. 
 
The guts of the computer is on the motherboard, so let’s focus on that: 
 

Motherboards of today include a lot of functionality that previously was included as an 
expansion card.  For example, chips for sound input and output, chips for interfacing with 
other devices (e.g., USB, universal serial bus), and connections for mice and the 
keyboard and even network connections are now standard.  Nevertheless, the 



 

 

motherboard is designed to accommodate the addition of hardware.  You can add 
additional RAM  using the SIMM (Single Inline Memory Module) slots, although many 
systems now use the DIMM format instead (Dual Inline Memory Module).  These are 
memory modules mounted on small circuit boards that you can just snap into the slots to 
add new memory.   
 
The ISA and PCI slots interface peripheral cards with the computer’s bus.  We’ll say 
more about the bus later, but it is a way to connect devices (e.g., the CPU and a 
peripheral card).   
 
The motherboard also contains connectors to attach storage devices, such as hard drives 
or CD-ROMs, along with ROM and BIOS chips for initial bootup. 
 
Finally, the motherboard has either a socket or a slot for the CPU itself.  The CPU will 
likely have a fan on it in order to dissipate some of the heat it generates. 
 
 
Digital Data Representation and Memory Organization 
 
Recall that everything in the computer is stored as 1’s or 0’s.  Numbers might be 
represented in unsigned binary, or perhaps in the IEEE 754 format if the number is a 
floating point number.  Characters might be stored in the ASCII code.  All of these are 
represented as the 1’s and 0’s and stored in RAM.  The actual memory chips contain 
transistors that can store the 1’s and 0’s as electrical charges. 
 
How do we store data in RAM?  To control where data goes, we need to have an address 
for memory.  Typically each memory address will reference 8 bits, or 1 byte.  For 
example, let’s say that we have a very simple memory system with 16 addresses: 
 
 Memory Address  Memory Contents 
 0    00000000    
 1    00000001 
 2    01000001 
 3    01000010 
 4    … 
 5 
 6 
 7 
 8 
 9  
 10 
 11 
 12 
 13 
 14 
 15 



 

 

I’ve left some data in the contents of the memory addresses.   In memory address 0, we 
have the byte 00000000.  As shown here, this is just some raw data.  But if we wanted to 
treat these 8 bits like a number, this would represent the number 0.  Similarly, the 
contents of memory address 1 contains the data 00000001.  If treated as a number, this 
could contain the value 1.  Memory address 2 contains the data 01000001.  If we treat 
this as a number, it is 65.  However, we might want to treat it as an ASCII character. If 
you look at the ASCII chart, this code corresponds to the letter ‘A’.      
 
What might be in memory address 3?   It could be the ASCII code for ‘B’, the number 
66, or something else!  It is going to be up to our program to correctly interpret what data 
is stored in memory. 
 
Von Neumann Architecture 
 
All of today’s computers, despite their many differences, are based on the design of John 
Von Neumann (pronounced as: von noimän).   His design was proposed in 1946 and the 
first computer, the EDVAC, was built according to his design in 1950.  The main ideas of 
the von Neumann architecture are: 
 

• Four major subsystems:  Memory, Input/Output (I/O), Arithmetic and Logic Unit 
(ALU), and the Control Unit (CU).  We’ll cover these in more detail coming up. 

 
• Stored Program Concept.   This is the idea that a program can be stored in 

memory, just like data is stored in memory.   This idea might sound obvious since 
you load programs in memory all the time today, but prior to this concept 
computers were programmed by hard-wiring them!  That is, to “load” a new 
program one had to manually wire and set switches to get the desired behavior. 

 
• Sequential program execution.  This concept goes along with the stored program 

concept.  A program is the sequential execution of instructions we will store in 
memory. 

 
 
Memory-Mapped I/O 
 
A common usage of memory is to “map” a portion of memory to some I/O device.  For 
example, memory address 15 above might really correspond to the printer’s serial port.  
By storing something into memory address 15, we could be sending data to the printer to 
be printed.  This concept is typically used for many input and output devices, such as the 
monitor and the graphics screen. 
 
 
Moving Data Around 
 
We’ll want to store different values in memory and operate on them.  The way we will 
generally do this is to move a value from memory to the CPU, the CPU might do some 



 

 

operation on it (e.g., maybe treat the data as a number and increment  it or add two 
numbers together), and then we will store the result back into memory.   To do this we 
need some way to move data from memory to the CPU, and vice versa. 
 
The device used to move data is called a bus.  A bus is a communication pathway 
connecting two or more devices.  A key characteristic of a bus is that it is a shared 
transmission medium, so multiple devices connected to the bus have to wait until the bus 
is free before it can transmit. 
 
In many cases, the bus actually consists of multiple communication pathways, or multiple 
wires/lines.  For example, an 8 bit unit of data can be transmitted over eight bus lines. 
 
Computer systems contain many different buses to connect different components.  Some 
of the buses we are concerned with are: 
 

• Data Bus: connects data from RAM to the CPU.  This consists of generally 8 or 
more lines so that we can transfer at least one byte simultaneously to the CPU.  
The number of lines is referred to as the bus width. 

 
• Address Bus:  connects addresses from RAM to the CPU.  If we are going to store 

some data into memory, somehow we have to tell memory what address we want 
to store it into.  We do this by putting the address we are storing to / reading from 
into the address bus. 

 
• Control Bus : This is going to control the timing and operations on the address 

and data bus (e.g., execute a read or a write to memory depending on what we 
want). 

 
Here is a simplified diagram of a CPU and memory: 
 

CPU

Memory

Address 0     00000001
Address 1    00000000

…
Address 15    00110101

Address Bus

Data Bus

Control Bus



 

 

Why did I use 4 lines for the address bus?  Because there are 16 memory addresses in this 
system, and we need four bits to specify which one of the 16 addresses we are interested 
in.  Each line will carry one bit, so we need four lines for the address bus. 
 
Let’s say that the CPU wants to read the location of memory address 1.  It would load the 
address it wants onto the address bus:   0001.   Then it would send the proper signal on 
the control bus that corresponded to “read the data that’s in the address bus”.  Main 
memory would then read this and load the contents of address 1 onto the data bus 
(00000000) and then send the proper signal on the control bus that corresponded to “send 
the data out on the data bus”.   The CPU would then be able to read the result on the data 
bus. 
 
Maybe the CPU did some operation, and it now wants to store the value 00010001 back 
into address 1.  In this case it would load the bit pattern 00010001 onto the data bus, and 
the address 0001 onto the address bus.  When the “Store the data” signal is given on the 
control bus, main memory would then store 00010001 into memory address 1. 
 
In practice, the control bus is more complex than a signal line depicted above.  There are 
also numerous timing issues that need to be resolved, that we are skipping here! 
The Central Processing Unit 
 
So far we’ve been treating the CPU as a black box.  Let’s look inside the CPU itself now 
to see what is there.  The major components of a CPU are depicted below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The CPU contains the Arithmetic and Logic Unit (ALU), the Control Unit (CU), and 
Registers.  The whole shebang interfaces with main memory through the control, data, 
and address bus described earlier. 
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The registers are minimal units of internal memory that operate very quickly. There is a 
special register called the accumulator which is typically the “main” register that is used.  
Other special registers include the Memory Address Register (MAR) and the Memory 
Data Register (MDR).  The MAR holds the memory address we want to either fetch data 
from or store data to.  Consequently, it is connected to the address bus.   The MDR holds 
the actual data we want to write to or read from main memory.  Consequently, it is 
connected to the data bus. 
 
The ALU does the actual computation or processing of data when we do some type of 
logical operation or mathematical operation.   For example, the ALU might add together 
the contents of two registers and store the result back in a different register.  The ALU 
will generally contain its own set of registers in addition to the CPU’s registers.   
 
The Control unit controls the movement of data and instructions into and out of the CPU 
and also controls the operation of the ALU.   Once piece of the CU is a special register 
called the Instruction Pointer.  This is a pointer to the memory address of the current 
instruction in the program we are now running.  The Instruction register contains the 
actual instruction we are to execute (e.g., add, subtract…)  Note: The names of these 
registers vary on different computer architectures! 
 
Let’s say that we want to add two numbers together.  First, the CPU must fetch these two 
numbers from main memory using the process we described above.  One of these 
numbers might go into register X, and the other into the Accumulator.   Next, the 
contents of register X and the Accumulator can be sent into registers in the ALU.  The 
ALU then performs the addition operation, and stores the result in the Accumulator.  
Finally, the value in the Accumulator is stored back into main memory.  All of these steps 
are controlled by the Control Unit! 
 
Instructions 
 
How does the Control Unit know if it should add, subtract, fetch, store, or what?  Your 
program controls all of this!    The control unit contains a Program Counter and an 
Instruction Register.  The Program Counter is the address of the current instruction we 
are executing in our program.  The Instruction Register contains the actual instruction 
itself. 
 
Recall that in the Von Neumann architecture, main memory contains data.  This data will 
store both the instructions for the program, and the data the program operates on.   For 
example let’s say that our simple computer memory contains the following: 



 

 

Memory Address Memory Contents 
 0  00000010 
 1  00000011 
 2  00000010 
 3  00000000 
 4  00000000 
 5  00000000 
 6  00000000 
 7  00110000  ; Instruction for LOAD Accumulator 
 8  00000000  ;     with memory address 0 
 9  00110001  ; Instruction for LOAD X Register 
 10  00000001  ;     with memory address 1 
 11  10101010  ; Instruction for Multiply Acc, X 
 12  11101010  ; Instruction for Store Accumulator 
 13  00000000  ;    into memory address 0 
 14  11111110  ; Jump to memory location 
 15  00001111  ;    jump destination is address 7 
 
Here, mixed in with our memory is data that our program will operate on, along with 
instructions for the computer.  The instructions are coded as sequences of bits as defined 
by the designer of the CPU.  In this example, the instructions begin at memory location 7.  
The bit pattern 00110000 might stand for “LOAD the Accumulator with the data in the 
following memory address”.  The value stored in the next memory slot holds the memory 
address to load.  Similarly, the bit pattern 00110001 might stand for “LOAD the X 
Register”, and some other pattern might correspond with Multiple, Divide, Add, etc.   
Each of these instructions is called an op code, and the data being operated on is the 
operand. 
 
If we program directly using these 1’s and 0’s then we are programming in machine code.  
It is inconvenient to program in machine code, so one level up is to assign short codes or 
mnemonics to each sequence of bits.   
 
For example, the mnemonic of LDA could correspond to the machine code 00110000 for 
“LoaDing the Accumulator”.   MUL could be the mnemonic that corresponds to the 
machine code 10101010 to MULtiply, etc.  It is important to remember that these 
mnemonics correspond to patterns of bits; the English mnemonics are there just to make 
it easier for people to understand. 
 
The complete list of instructions that the CPU is able to execute is called the instruction 
set.  A small sample of some common instructions with hypothetic mnemonics are listed 
below: 



 

 

 
Op Code Operation    Example 
CLA  Clear the accumulator to 0  CLA 
MAM  Move Accumulator to memory MAM 4 
MMA  Move memory to Accumulator MMA 6 
ADD  Add two registers, result in Acc ADD  
SUB  Subtract, result in Accumulator SUB 
INC  Increment the register value by 1 INC 
CMP  Compare registers; if equal, 
  Put 1 in the Accumulator, else 0 CMP REG1 REG2 
JMP  Branch to a new memory location JMP 5 
JPZ  Jump if accumulator is zero  JPZ 5 
 
Instruction Cycle 
 
Let’s actually simulate running through the sequence of instructions shown above.  The 
process that the computer follows is to: 
 

1. Fetch the instruction located at the address stored in the Program Counter register, 
and put its contents into the Instruction Register. 

 
2. Decode the instruction (figure out what it is) 

 
3. Execute the instruction. 

 
4. Increment the contents of the instruction pointer, and go back to step 1. 

 
Let’s say that we begin our process with the Program Counter containing the number 7, 
the Accumulator contains 0, and the X register contains 0: 
 
 PC = 7,  Acc = 0,  X = 0 
 
In our example, we will first fetch the contents of memory address 7 and put it into the 
Instruction Register.  The Instruction Register now holds 00110000.  In decoding this 
instruction, the Control Unit learns that this is the “Load” operation and that it has one 
operand.  Therefore we need to fetch the operand from memory.  To do this we can 
increment the Program Counter to 8, and fetch its contents into the Instruction Register.  
We now have all the information we need, and can execute the instruction:  Load the 
contents of memory location 0 into the accumulator (00000010 or the number 2).   After 
this is done, the Program Counter is incremented by one and we go on to the next 
instruction.  Our three registers now contains: 
 
 PC = 9,  Acc = 2,  X = 0 
 
In this case, the next instruction performs a similar process but with memory location 1 
into register X (00000011 or the number 3).  The registers now contain: 



 

 

 PC = 11,  Acc = 2,  X = 3 
 
The next instruction is a multiply instruction, which will cause the CU to store the 
contents of the two registers into the ALU, and then direct the ALU to multiply the 
values together.  Typically the results of these operations will be stored back into the 
Accumulator. Note that this instruction does not have an operand, so we don’t need to 
make another trip to memory in decoding or executing the instruction.    After we have 
stored the result of the multiplication back into the accumulator, the registers contain: 
 
 PC = 12,  Acc = 6,  X = 3 
 
The next instruction is a store instruction, which will cause the CPU to store the results of 
the accumulator into memory address 0.  The value 00000010 in memory address 0 will 
be overwritten with the number 6, or 00000110 in binary. 
 
Finally, we fetch the last instruction, which is a JUMP instruction to memory address 7.  
Once these instructions have been loaded, this instruction is executed by changing the 
contents of the Program Counter to 7.    This will then cause the computer to start 
executing the instructions at memory location 7, which is where we just started!  This 
program is an infinite loop which keeps multiplying memory location 1 to memory 
location 0 and storing the results back to memory location 0.  (Note after the Jump we 
have to not increment the Program Counter; alternately we could have jumped to location 
6 and then incremented the Program Counter). 
 
Increasing CPU Performance  
 
There are several ways we can speed up operation of the computer.  The simplest way is 
to increase the clock rate.  The CPU operates off a clock, e.g. many computers today 
operate at 1.5 Ghz or 1.5 billion cycles per second.  Each cycle corresponds to a period of 
time where the computer can do some work – such as transfer data among registers or 
add numbers together.  If we can increase this rate, then we will perform all of our 
instructions faster. 
 
However, increasing clock rate is a bit misleading – even if the CPU operates faster, this 
doesn’t mean memory operates any faster!  The computer is only as fast as its weakest 
link.  Consequently, the speed of your disk, RAM, and other devices may limit actual 
performance. 
 
Word size refers to the number of bits that the CPU can manipulate at once.  Older 
computers operated on 8 bits at once, but today’s computers operate on 32 bits.  The 
Alpha and the Itanium operate on 64 bits.  In general, processing more bits at once 
contributes to increased performance. 
 
CPU Cache (pronounced cash) refers to a special high-speed memory that exists between 
main memory and the CPU.  The cache will temporarily store instructions and data.  It is 
much faster to retrieve data from the cache than it is to retrieve data from main memory 



 

 

because the cache is constructed using high-speed transistors that are much faster than the 
way main RAM is created.  We could use this high-speed memory in main memory 
RAM, but the computer would then be incredibly expensive.  When the CPU needs to get 
something from memory, it first checks the cache.  If the data we want is in the cache, 
then the value is used without getting it from main memory.  If the data is not in the 
cache, it is retrieved from main memory and also stored in the cache.  Since the cache is 
much smaller than main memory, when something new is added to the cache, something 
old needs to be thrown out!  There are many subtleties to caching that are discussed in 
more detail in a computer architecture course, but caching is responsible for a great 
increase in computing performance. 
 
RISC vs. CISC 
 
Another way to increase CPU performance is to tinker with the instruction set.  The 
original strategy that was pursued in CPU design was the CISC design, or Complex 
Instruction Set Computer.  In the CISC design, lots of instructions were added to the 
instruction set.  For example, we could have instructions that do relatively complex tasks, 
such as zeroing out portions of memory, copying blocks of memory, or even sorting bytes 
of data.  While these instructions will run quickly, the problem is that most of these 
instructions are not used.  However, a large amount of circuitry needs to be added to 
support these functions.  Not only is this expensive, but all the extra circuitry actually 
slows down the basic computing cycle of the CPU!  That is, the more instructions we 
add, the slower all instructions get.   
 
The alternate approach is the RISC design, or Reduced Instruction Set Computer.  In 
RISC computers, the idea is to only supply the most primitive instructions needed to get 
the job done.  Since there are not many instructions, all of them will run very fast.  
According to the theory, these instructions will also be the ones that are executed most 
frequently, resulting in overall faster CPU execution. 
 
Many computers today actually strike a balance between both approaches. 
 
Pipelining 
 
Another approach that is implemented in virtually all computers is pipelining.  If we look 
at the instruction cycle, we 1) fetch, 2) decode, and 3) execute  the instruction.  Each 
instruction we process has to go through all three of these stages. 
 



 

 

However, why not start fetching the next instruction while we’re decoding the current 
instruction?  Similarly, why not decode the next instruction while we’re executing the 
current instruction?  This means that the next instruction will be ready to execute once 
we’re done executing the current instruction.  This process is shown in the picture below: 
 

The pipelining process allows us to overlap the fetching and execution of each 
instruction.  The result is that we can execute instruction one after the other, much like 
factory workers on an assembly line.  In practice, pipelines are often many stages deep 
(7-10) stages.   
 
Potential problem:  What if Instruction 1 is a JPZ (Jump if Zero, or conditional branch) 
instruction?  Then if we take the branch, instructions we have already fetched into the 
pipeline won’t be used and have to be discarded, resulting in lower performance. 
 
 
Parallel Processing 
 
Finally, another way to increase CPU performance is to simply add more CPU’s.  If 
possible, these CPU’s will operate at the same time on the data. 
 
There are two general types of parallel processors: 
 
SIMD = Single Instruction, Multiple Data.    A SIMD machine applies a single 
instruction to lots of data.  For example, it could add the number 1 to ten other numbers 
all simultaneously.   
 
MIMD = Multiple Instruction, Multiple Data.  A MIMD machine applies different 
instructions to different data.  For example, it could be adding the number 1 to one 
memory location, while multiplying the number 5 to another memory location 
simultaneously. 
 

Time
0    1    2   3   4   5   6  7  8  9  10   11  12

Instruction 1    FFFDDDEEE

Instruction 2            FFFDDDEEE

Instruction 3                    FFFDDDEEE

…



 

 

Both types are applicable in certain situations and require careful design and setup to be 
effective.   For example, many matrix operations can be efficiently implemented using 
SIMD instructions. 
 
The Intel Pentium processors are uniprocessor machines, but actually have some SIMD 
instruction capabilities.   
 
The Pentium II includes “MMX” capabilities, which allow for SIMD instructions on two 
32 bit integers or on four 16 bit integers.  As a simple example, maybe we want to 
perform a “fade” effect for the graphics screen.  This might mean taking the brightness of 
each pixel on the screen, subtracting it, storing it back, and repeating the process until the 
brightness of all pixels is zero.  Instead of doing this operation on one pixel at a time, we 
could use MMX and do it on four pixels at one time, increasing the speed of the 
operation. 
 
The Pentium III includes “SSE” capabilities (Streaming SIMD Extensions) which allows 
for SIMD instructions on four 32 bit floats stored in the IEEE 754 format.  This has the 
potential to increase the speed on compute-intensive tasks, but programs must be 
carefully written to take organize data in such a way as to take advantage of these types 
of instructions. 
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