
 

 

CS101 
Binary Storage Devices and Boolean Logic 
 
Now that we have discussed number representation, why do computers use the binary 
representation and not something we are more familiar with, like decimal? 
 
The main reason is that binary is cheap and it is reliable.   A binary 0 or 1 will generally 
be stored as some sort of electrical charge.  For example, say we have a binary device 
that represents a 0 by storing an electrical charge of 0 volts, and a value of 1 is stored 
with an electrical charge of 9 volts: 
 
 
 
 
 
 
 
 
 
There is a good chance of a little error; let’s say that the device is really charged to 8 
volts instead of 9 volts.  That’s ok, because a binary 1 is still closer to 8 volts than to a 
binary 0.  We wouldn’t confuse a 0 and a 1 until we dropped all the way down to 4.5 
volts. 
 
Instead, let’s say that our device is storing 10 digits instead of 2 digits.   We could do this 
by storing varying amounts of charge; a charge of 0 volts represents digit 0, a charge of 1 
volts represents digit 1, a charge of 2 volts represents digit 2, etc. : 
 
 
 
 
 
 
 
 
Although we are storing more digits on the device than with the binary system, there is 
less room for error.  If we meant to store the digit “9” but somehow our device is not 
charged correctly and stores a voltage of 8.3 instead, then when we go to read the value 
stored in the device we would get the digit “8” instead.  In contrast, there is more room 
for error on the binary device since we are only storing two digits with our voltage range.   
This makes binary less susceptible to error and noise than analog storage devices (e.g., 
clear digital audio or music vs. analog audio). 
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How is the binary charge actually stored on the computer? 
 
In the 40’s and 50’s, computers used vacuum tubes.  A vacuum tube operates in a 
manner similar to a lightbulb.  In a lightbulb, electrical current flows across the bulb 
giving out light in the process.   In contrast, the vacuum tube has a plate in the center that 
provides a mechanism to control the current.  If the plate is charged one way, the current 
flow will stop.  If the plate is charged oppositely, the current continues.  This in effect is 
an electronically controlled switch, where the switch can represent a binary 0 or 1. 
 
A major problem of vacuum tubes is that they take up a lot of space and give out a ton of 
heat.  The ENIAC computer shown below from 1947 required over 18,000 vacuum tubes 
and occupied an entire room. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the 60’s and 70’s, computers used core memory.  Core memory stored data 
magnetically, much as you would store data on a cassette recorder.  Each bit was stored 
on a magnetized “doughnut”.   If the magnetic field was clockwise, the core represented a 
zero.  If the magnetic field was counter-clockwise, the core stored a one.  Wires through 
the center of the core could set the magnetic field (i.e. store a one or a zero) or detect the 
orientation of the magnetic field (i.e. read whether a one or a zero was stored). 
 
Each doughnut of the core memory was organized in a big two-dimensional grid that 
allowed direct access to each cell in the memory: 
 



 

 

 
 
One problem of core memory is that it was slow and also occupied a large amount of 
physical space.  In contrast, today’s computer memories are based on transistors.  The 
transistor was invented in 1947 at Bell Labs by Bardeen, Brattain, and Shockley and is 
essentially a very tiny switch created in silicon. 
 
The transistor was a transforming invention!  Ultimately it would allow devices to be 
constructed millions of times smaller and millions of times cheaper than before.  The first 
transistor was about the size of a thumb, with a paperclip, gold foil, germanium, and 
coiled wire.  Germanium is, like silicon, a semiconductor – it only conducts a trickle of 
electricity.  This can be used to control the amplification of signals by changing the 
material from a conductor to an insulator.   The discovery of the transistor was actually 
an accident – there is some evidence that Shockley was annoyed and was looking for 
something else.  It took until 1948 to see the real value and in 1951 you could license 
transistor technology for $25K.  Then Shockley went on to start the seeds of Silicon 
Valley.  
 
A schematic of a transistor is shown below.  Electrons flow from the emitter to the 
collector.  By varying the current on the base,  the amount of current flowing between the 
collector and emitter can be regulated (e.g. stopped to represent a zero, or flowing to 
represent a one). 
 

 
 
The next improvement in memory technology came with the integrated circuit, or IC, 
invented by Jack Kilby and Bob Noyce at Texas Instruments in 1964.  The IC is a way to 
package together multiple transistors on the same piece of silicon.  This allows more 
transistors to be placed in the same amount of space, requires less energy, outputs less 
heat, and runs faster since there is a shorter distance for electrons to travel.    
 
The creation of an IC begins with an ingot of purified silicon: 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This ingot is sliced with a diamond saw into thin wafers.  The transistors are then 
“etched” into the wafer using a lithography process similar to photography.  Masks are 
laid over the wafers, ultraviolet light is shone through the mask, and the chip is built up in 
layers on the silicon wafer.  The entire process takes about three months and the end 
result is multiple chips etched onto a single wafer.   Here is a cross-section of a sample 
wafer: 
 

 
 
Finally, each chip is cut out of the wafer and packaged into a plastic case with metal 
connectors that you are probably familiar with: 
 

 
 
As process technology improves, engineers have been able to put more and more 
transistors onto a single chip.  We are currently at the point where approximately 10 
million transistors can be placed into a square centimeter!  This technology is called 
VLSI, or Very Large Scale Integration.  Thanks to integration improvements, our 



 

 

microprocessors have been running faster and faster.  The more transistors we can pack 
together, the shorter distance electrons have to travel and the more performance we get, 
resulting in faster computers.  
 
The degree of integration is often measured in microns, where a micron is one millionth 
of a meter.   The number of microns is used to denote how far apart we can place 
transistors on the chip, so a smaller number means we can pack more transistors in the 
same chip.  The micron process technology has been dropping over the years: 
 

• Human Hair: 100 microns wide 
• Bacterium: 5 microns 
• Virus: 0.8 microns 
• Early microprocessors: 10-15 micron technology 
• 1997:  0.35 Micron 
• 1998:  0.25 Micron 
• 1999:  0.18 Micron 
• 2001:  0.13 Micron 
• 2002:  0.11 Micron 

 
The physical limits are believed to be around 0.06 Microns, so we still have a ways to go! 
 
 
Boolean Logic 
 
The construction of computer circuits, and to a large degree, of software programs, is 
based on a branch of symbolic logic called Boolean logic, named after English 
mathematician George Boole.  Boolean logic manipulates only two values:  true and 
false. 
 
We have actually already used Boolean logic in describing algorithms.   
 
For example, let’s say that we store the value 5 into variable x.  We can now make 
Boolean expressions regarding x: 
 
The Boolean expression:   x equals 4  
is false, because x equals 1, not 4. 
 
The Boolean expression:   x <  4  
is true, because 1 is less than 4. 
 
The Boolean expression:   x > 4  
is false, because 1 is not greater than 4. 
 
Boolean expressions become more interesting when we combine multiple expressions.  
The basic operators to combine Boolean expressions are AND, OR, and NOT. 
 



 

 

AND is a binary Boolean operator, meaning it requires two 
Boolean values (operands).  If both operands are true, the result is 
true.  Otherwise, the result is false. 
                  True      False 
True          True     False 
False          False    False 
 
Example:  (1<4) AND (4<3)  is false because we are AND’ing true 
and false which results in false. 
 
(1<4) AND (3<4) is true because we are AND’ing true and true, 
which results in true. 

OR is a binary Boolean operator.  If at least one of the operands is 
true, the result is true.  Otherwise, the result is false. 
                  True      False 
True           True     True 
False          True      False 
 
Example:  (1<4) OR (4<3)  is true because we are AND’ing true 
and false which results in true. 

 
NOT is a unary Boolean operator – it requires only one Boolean 
value to operate on.  NOT changes the value of its operand: If the 
operand is true, the result is false; if the operand is false, the result 
is true. 
                  Not_Value 
True          False 
False          True 
 
Example:  NOT (1 < 4)   is false, because (1 < 4) is true, and by 
NOT’ing it, we get the opposite of true, which is false. 

 



 

 

Examples:  Assume that x = 1 and y = 2: 
 

1. (x equals 1) AND (y equals 3)    
 
evaluates: 
(true) AND (false)    FALSE   
 
All operands must be true for the AND to become true. 

 
 
2. (x < y) OR (x > 1) OR (y < 1) 

 
evaluates: 
(true) OR (false) OR (false)  TRUE 
 
Only one operand must be true for the OR to become true. 

 
 

3. NOT ((x equals 1) AND (y equals 3)) 
 
evaluates: 
NOT ((true) AND (false)) 
NOT (false)    TRUE 

 
4. ((x equals 1) AND ((y equals 3) OR (x < y)) 
 

evaluates: 
((true) AND ((false) OR (true))) 
((true) AND (true))   TRUE 
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