Department of
Mathematical Sciences
University of Alaska Anchorage

Deriving Change of Bases

$$
\begin{gathered}
\mathcal{B}=\left\{x^{2}, x, 1\right\} \\
\mathcal{C}=\left\{x^{2}+1, x^{2}+x, x+1\right\}
\end{gathered}
$$

Note first the following coordinates.

$$
\begin{aligned}
{\left[x^{2}+x+5\right]_{\mathcal{B}} } & =[1,1,5] \\
{\left[x^{2}\right]_{\mathcal{C}} } & =[1 / 2,1 / 2,-1 / 2] \\
{[x]_{\mathcal{C}} } & =[-1 / 2,1 / 2,1 / 2] \\
{[1]_{\mathcal{C}} } & =[1 / 2,-1 / 2,1 / 2]
\end{aligned}
$$

$$
\begin{array}{rlrl}
x^{2}+x+5= & 1\left(x^{2}\right)+1(x)+5(1) & & \text { expanded as linear combination of } \mathcal{B} \\
= & 1\left(1 / 2\left(x^{2}+1\right)+1 / 2\left(x^{2}+x\right)-1 / 2(x+1)\right)+ & \\
& 1\left(-1 / 2\left(x^{2}+1\right)+1 / 2\left(x^{2}+x\right)+1 / 2(x+1)\right)+ & \\
& 5\left(1 / 2\left(x^{2}+1\right)-1 / 2\left(x^{2}+x\right)+1 / 2(x+1)\right) & \vec{b}_{i} \text { written as linear combinations of } \mathcal{C} \\
= & {[1(1 / 2)+1(-1 / 2)+5(1 / 2)]\left(x^{2}+1\right)+} & \\
& {[1(1 / 2)+1(1 / 2)+5(-1 / 2)]\left(x^{2}+x\right)+} & & \\
& {[1(-1 / 2)+1 /(1 / 2)+5(1 / 2)](x+1)} & & \\
= & 5 / 2\left(x^{2}+1\right)-3 / 2\left(x^{2}+x\right)+5 / 2(x+1) . &
\end{array}
$$

Compare the arithmetic above (last two steps) to the calculation below.

$$
\begin{aligned}
{\left[\begin{array}{rrr}
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right] } & =\left[\begin{array}{r}
1(1 / 2)+1(-1 / 2)+5(1 / 2) \\
1(1 / 2)+1(1 / 2)+5(-1 / 2) \\
1(-1 / 2)+1(1 / 2)+5(1 / 2)
\end{array}\right] \\
& =\left[\begin{array}{r}
5 / 2 \\
-3 / 2 \\
5 / 2
\end{array}\right]
\end{aligned}
$$

