Department of
Mathematical Sciences
University of Alaska Anchorage

Testing a Potential Basis

$$
\mathcal{B}=\left\{6,-3+6 x, 1-6 x+6 x^{2}\right\}
$$

Test if \mathcal{B} is a basis for P^{2} (polynomials of degree 2 or less).

Independence

The test for independence begins, as always, with the definition of independence.

$$
\begin{aligned}
a(6)+b(-3+6 x)+c\left(1-6 x+6 x^{2}\right) & =0 . \\
6 a-3 b+c & =0 . \\
6 b-6 c & =0 . \\
6 c & =0 .
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
6 & -3 & 1 & 0 \\
0 & 6 & -6 & 0 \\
0 & 0 & 6 & 0
\end{array}\right]}
\end{aligned} \begin{aligned}
& \\
& {\left[\begin{array}{rrrr}
1 & -\frac{1}{2} & \frac{1}{6} & 0 \\
0 & 6 & -6 & 0 \\
0 & 0 & 6 & 0
\end{array}\right] \sim \begin{array}{l}
R_{1} \frac{1}{6} \leftarrow R_{1} \\
R_{1} \leftarrow \frac{1}{12} R_{2}+R_{1} \\
R_{2} \frac{1}{6} \leftarrow R_{2}
\end{array}}
\end{aligned}
$$

$$
\left[\begin{array}{rrrr}
1 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 6 & 0
\end{array}\right] \sim \begin{aligned}
& R_{1} \leftarrow \frac{1}{18} R_{3}+R_{1} \\
& R_{2} \leftarrow \frac{1}{6} R_{3}+R_{2} \\
& R_{3} \frac{1}{6} \leftarrow R_{3}
\end{aligned}
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Thus the only solution is the trivial solution.
Span
The test for span begins, as always, with the definition of spanning

$$
\begin{aligned}
a(6)+b(-3+6 x)+c\left(1-6 x+6 x^{2}\right) & =r_{0}+r_{1} x+r_{2} x^{2} . \\
6 a-3 b+c & =r_{0} . \\
6 b-6 c & =r_{1} . \\
6 c & =r_{2} .
\end{aligned}
$$

Note that this is the same matrix that was row reduced to check independence. Additionally the number of solutions to a non-homogeneous (this system) equals the number of solutions for the homogeneous (previous system). Thus a solution exists and is unique. This is a spanning set.

